Stan Mazor:
 Reflections on Gordon Moore, Fairchild, and I ntel

 I nterviewed by Brian Berg 2 May 2023
2 IEEE-CNSV

Consultants' Network of Silicon Valley

Stan Mazor's Career

1960 San Francisco State University
1964 Fairchild (Semiconductor)
1969 Intel (Semiconductor)
1983 Silicon Compilers (CAD)
1988 Synopsys (CAD)
1996 BEA Systems (Middleware)
1998 Cadabra/Numerical (CAD)
2003 Retired (Author)

Stan Mazor: 1958 (Age 17)

(1)akland de Tribune

OAKLAND, CALIFORNIA, WEDNESDAY, OCTOBER 22, 1958

Stan Mazor: 1958 (Age 17)

THobby Lobby

Statesmen Getting Out Vote

By BRENDA COLLINS
NTUNTOR Statesmen have has also been a delegate to Mr, and Mr worked too much within the Boys' State. organization and not enough outaide It," decinres Stan Mazor of Onkland, state governor.
"We wish to be a serviee organization, in addition to an educational one."
Chapters from around the ntate are already implementing the new policy sel down by their governor.
Today they helped get out the vote. In many armes of the state nembers baby sat while mothers voted, and they drove others to their polling places. Statesmen also distributed leaflets to citizens urging them to cast their ballots.
A second project, completed Friday, was a political preferonce poll, in which atudents from 50 Calitornia high schools participated. Candidates and issues were discussed in history and American probioms cledtion before the voting

Jr. Statesman Annual Ball

Stan Mazor: 1959 (Age 18)

San Francisco State Univ.: 1960-1963

- Machine Shop: helicopter project
- Philosophy -Formal logic—deMorgan's theorem
- Advanced Calculus---epsilon/delta theory
- Probability/Statistics—Normal distribution
- Assembly language programming-interpreter

Stan Mazor at SFSU: 1963 (Age 21)

Learned programming Studied Computer Design
Learned some:

- statistics
- bookkeeping
- economics
- philosophy
- selling (job)
- No major
- No required classes
- No degree

Stan Mazor at SFSU: 1963 (Age 21): Working on an IBM 1620

Stan Mazor in Silicon Valley: 1964 (Age 23)

Dual Inline Packages (DIP)

Chip in Package

Silicon Wafer

Integrated Circuit (IC) Chip

- Collection of connected transistors
o Hoerni's "planar" process 1960
o Noyce (Fairchild) CTuL (micro logic)
o Kilby (TI) TTL Nobel Prize (2000)
- Limits (1970):
o Design and layout complexity (no CAD)
o On chip wiring (1 metal layer)
o Package pins 14 (then 16)
o Power dissipation (< 1 Watt)

Sorted Wafer

$300+$ processing steps
20+ photographic steps
~ 3 months to make
Ink marks defective dice
Defects:
wafer material defects
processing defects
statistical limits

Yield Estimate: 4X Larger Die

Bigger Chip = Lots of stuff Few good ones

1
3
5
3
4
1
3
2
3
25
(of 81+ possible)

Yield 25/81 = 30\%

Yield Estimate: 25X Larger Die

Almost 1 good (of 16 possible)

Zero Yield

Big Chips = Lots of stuff No good chips

Transistor Cost v. Density: Bathtub Curve

Density (transistors)

Chip Object Sizes

Gordon Moore’s 1965 Observation at Fairchild (aka, "Moore's Law")

4k Bits Static RAM (chips)

SIXTEEN 1101

FOUR 2102

ONE 211

Another View of Moore's Law

Reflections on Gordon Moore by Bill Davidow of Mohr Davidow Ventures

MOHR DAVIDOW VENTURES

Gordon Moore's Fairchild R\&D Projects (1966)

- Micro Mosaic: standard cells
- Micro Matrix: gate arrays
- Fairsim: logic simulator and CAD tools
- Symbol:large scale computer
- Op Amp: analog circuit

Fairchild Symbol 2R Computer Intro (1968)

Use 10x more logic
Plan for future LSI
20 guys for 5 years

Fairchild Symbol Computer

Stanley Mazor
IEEE, Sr. Member
IEEE Annals of the History of Computing story by Stan (Jan-March 2008)

Features of the Symbol computer:

- New Symbol programming language
- Hardware directly executed Symbol source code
- Compiler and operating system built with hardware
- Memory controller provided virtual memory
- US Patent 3,647,348 (Stan was co-inventor)
- Hardware supported dynamically-varying sized data

Printed Circuit Board (PCB)

Printed
wires
200 IC’s

Symbol Program Example

$Y=$ "is good";
$\mathrm{Y}=$ " is much better than it was";
$\mathrm{Y}=3 / 2$;
$\mathrm{Y}[2]=<18,24,36>$;

Memory Operations

- Assign group-AG. This operation allocated a new group from the storage free list, (allocated a new page if needed), and returned the address of the first word in the group.
- Store and assign-SA. This operation stored the data word at the address sent, and returned the next sequential address for the following word in the same group. If the group was full, it allocated another group from the free space pool, and linked the groups together, and returned the address of the next free location in the group.
- Fetch and follow-FF. This operation fetched the data word at the address given and returned the next sequential address of data, if in another group, it followed the link. If this was the end, it returned a null address.

Integrated Circuit (IC)

- Limits (1970):
o Design and layout complexity (weak CAD)
o On chip wiring (1 metal layer)
o Package pins 14 (then 16)
o Power dissipation (< 1 Watt)
o Logic gates and 4-bit latch

1969：Move from Fairchild to Intel

FAIRCHILD SEMICロNロபСTロロ®

MCS-4 (My Memories)

- ROM memory 4001
- RAM memory 4002
- Shift register (memory chip) 4003

Glass Teletype (1970)

- Competitive cost vs teletype
- Beehive, Wyle, Hazeltine, Datapoint
- Memory data: 25 lines x 80 char/line Serial 2,000 chars x 6 bits $=\mathbf{1 2 k}$ bits
- Shift register memory chips
- Datapoint 2200 8-bit computer
- Intel 8008 CPU chip (patents)

Ideal Memory Chip

- 1k bits 'same' cell layout
- Short wires connect neighbors
- 2 data pins IN and OUT

Ideal Memory Chip Layout (S)

The Shift Register

Ideal Memory Chip and PCB

- All chips are 1k SR's
- Short wires connect neighbors
- 2 data pins IN and OUT

Random Access Read Only Memory (ROM)

- Layout Mask sets (writes) data
- Random access (Address In) selects data
- Chip Select enables Data out

Photo Lithography

Busicom Calculator MCS-4 Chips

$\begin{array}{ll}\text { CPU Acc, } 16 \text { index regs, } 4 \text {-bit, } 45 \text { instr. } & 4004 \\ \text { 4 ROM } 256 \times 8=1 \mathrm{k} \text { program code } & 4001 \\ \text { 2 RAM 4 register x } 16 \text { digit } \mathrm{x}=8 \text { numbers } & 4002\end{array}$
Serial 14 digit floating point arithmetic Need I/O signals for keyboard and printer 6 memory chips x 4 pins $=24$ I/O pins 15 V PMOS SiGate

Pins are valuable, logic is cheap

CPU (4004) / ROM (4001)

Sent last
12- bit Program Counter PC (CCCQ HHHH LLLL)
8- Memory Address Register MAR gets (LLLL, HHHH) :c1, c2
ROM 256×8; 8 bits read (every ROM) using MAR :c3
ROM has 4-bit ID code CCCC
CPU sends chip ID CCCC to all ROM's :c3
The selected ROM sends 8-bits (op code) to CPU :c4, c5
No Chip Select (CS pin) on ROM (CCCC selects one ROM ID)

4001 ROM: 4-bit I/O port

Each 4001 ROM has 4 bit I/O port (pins)
CPU executes Read/Write of ROM port
ROM sees/decodes op code :c4, c5 (no control pins)
CPU op: RDR reads ROM port 4-bits into ACC
CPU op: SRC selects a ROM chip port (previously)

IBM Core Memory Unit

- Extends Main Frame memory
- Read/Write memory ops (transparent)

Random Access Memory (DRAM)

- Random access (Address In) selects data
- Data in and Data out
- Read out or Write data in

4002 RAM: 4 Registers

4002 RAM 4 registers 16 digits each

- RAM ID is 0-3 built-in

4002 RAM

Read/Write RAM data (Data in, Data out)
No Read or Write pin on 4002 RAM
PIN CONFIGURATION

Write ACC to 4- bit port
No Write port pin on 4002 RAM

4004 CPU Read Port Instructions

69	ROM	1110	1001	Read the previously selected RAM man memory character imo the accumulator
EA	ROM	1110	1010	Rase the contents of the previousiy semeted ROM input port impo the accumulator (I/O Lines)

8008 Microprocessor Spec

Written @ Intel 1971
Design issues:
die size
power dissipation package pin count testability

Patented by TI

8008 Microprocessor: 1972

Intel 8080 Chip: 1974

40-pin DIP

5 Volts

3/4 Watt

M. Shima (island)

Intel Microprocessor Credits

4004 Microprocessor (1971)

- Hoff: MCS-4 architecture and instruction set (before Stan joined)
- Mazor: added 4 instr. (FIN, JIN, +2); wrote interpreter and code
- Faggin: did all logic, circuit design, layout, testing, and chip plans
- (1974 Intel patent: US 3,821,715)
- Shima: Busicom calculator designer: all coding, assisted layout verification

8008 Microprocessor (1972)

- Mazor: proposed 8-bit CPU
- Faggin: supervised (Feeney) (1973 TI patent: US 3,757,306)

8080 Microprocessor (1974)

- Faggin, Shima, Mazor (1977 Intel patent: US 4,010,449)

Conclusions

- Known physical limits may be overcome (maybe not)

Moore's law will slow down
Chip heat and energy issues prevail

- Technology requires large financial investment Invest only if there is a market

New technologies enable new markets

- Existing approaches tend to saturate
- Some new directions identified, but are unproven

Patents

Fairchild awarded US Patent No. 3,647,348 on March 7, 1972 for Paging system supporting Virtual Memory (Symbol Computer) "Hardware-Oriented Paging Control System" William Smith, Rex Rice and Stan Mazor 2 Claims: transfer of pages

Intel awarded US Patent 3,821,715 on June 28, 1974 for 3-chip computer with single chip 4-bit CPU (4004)
"Memory system for a multi-chip digital computer,"
Ted Hoff, Stan Mazor, Federico Faggin 17 Claims: memory schemes
TI awarded US Patent 3,757,306 on September 4, 1973 for the single-chip 8-bit CPU (8008) 8 Claims: CPU

Intel awarded US Patent 4,010,449 on March 1, 1977 for "MOS Computer" (8080)
Federico Faggin, M. Shima, Stan Mazor 2 Claims: coding

1983: Silicon Compilers

- Founded in 1981 by Carver Mead, David L. Johannsen, and Edmund K. Cheng

IEEE Annals of the History of Computing

of the History of Computing

Annals at 30:
Founding Editor in Chief Bernard A. Galler

Mazor's writings:
Intel 4004: 2005
Intel 8008: 2006
Intel 8080: 2007
Symbol Computer: 2008
Magnavox video game: 2009
Intel 8086: 2010

Recognitions

- 1996: National Inventors Hall of Fame
- 1997: Kyoto Prize
- 2000: Robert N. Noyce Award
- 2009: Computer History Museum Fellow
- 2009: National Medal of Technology and Innovation
- From Pres. Obama, with Ted Hoff and Federico Faggin
- "for the conception, design, development, and application of the first microcomputer, a universal building block that enabled a multitude of novel digital electronic systems"

