NAND Flash and New Applications

Yan Li, Ph.D
VP of Engineering, Silicon Technology
Western Digital
Nov. 15, 2022
Forward-Looking Statements

Safe Harbor | Disclaimers

This presentation contains forward-looking statements within the meaning of federal securities laws, including statements regarding expectations for data growth, market opportunities, demand trends, bit shipments, cost reductions, capital expenditures and product and technology innovations. These forward-looking statements are based on management’s current expectations and are subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied in the forward-looking statements.

Important risks and uncertainties include future responses to and effects of the COVID-19 pandemic; volatility in global economic conditions; impact of business and market conditions; impact of competitive products and pricing; our development and introduction of products based on new technologies and expansion into new data storage markets; risks associated with cost saving initiatives, restructurings, acquisitions, divestitures, mergers, joint ventures and our strategic relationships; difficulties or delays in manufacturing or other supply chain disruptions; hiring and retention of key employees; our substantial level of debt and other financial obligations; changes to our relationships with key customers; disruptions in operations from cyberattacks or other system security risks; actions by competitors; risks associated with compliance with changing legal and regulatory requirements and the outcome of legal proceedings; and other risks and uncertainties listed in the company’s filings with the Securities and Exchange Commission (the “SEC”) and available on the SEC’s website at www.sec.gov, including our Form 10-K filed with the SEC on August 27, 2021, to which your attention is directed. You should not place undue reliance on these forward-looking statements, which speak only as of the date hereof, and the company undertakes no obligation to update or revise these forward-looking statements to reflect new information or events, except as required by law.
“She Invent” Program In WDC
An introduction

Problem
--21% of our worldwide technical staff is female
--Only 11% of our inventor participation is female

Root Cause
--Information gap
--Confidence gap
--Social norms
--Perfectionism
--Imposter syndrome

Actions
- Increased Invention Review Boards
- Established mentoring programs
- Created training video
- Celebrating female inventors

--Female participation in the patent program increased 27% from FY20 to FY21
--Number of WDC women who submitted inventions increased 29% from FY21 to FY22
Talk Outline

1. Introduction
2. 3D NAND Flash Scaling
3. The Flash Management
4. The Flash Applications
5. Takeaway
Talk Outline

1. Introduction
2. 3D NAND Flash Scaling
3. The Flash Management
4. The Flash Applications
5. Takeaway
Worldwide Data Creation

Data Created

ZB

2023 Data Created & Stored

ZB

SOURCE: IDC GLOBAL STORAGESPHERE FORECAST, 2022-2026, APRIL 2022, #US49155722
Storage and Memory Hierarchy

HDD is storage foundation
NAND is not replaceable
Leading Portfolio Breadth and Depth
Solutions to capture, preserve, access and transform data
Talk Outline

1. Introduction
2. 3D NAND Flash Scaling
3. The Flash Management
4. The Flash Applications
5. Takeaway
The Last 34 Years Flash Scaling & Continuing

<table>
<thead>
<tr>
<th>Year</th>
<th>Mbit</th>
<th>Um</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>4Mbit</td>
<td>1.0um</td>
<td>production</td>
</tr>
<tr>
<td>1992</td>
<td>16Mbit</td>
<td>~0.7um</td>
<td>experimental</td>
</tr>
<tr>
<td>1995</td>
<td>64Mbit</td>
<td>~0.4um</td>
<td>production</td>
</tr>
<tr>
<td>1998</td>
<td>256Mbit</td>
<td>0.25um</td>
<td>production</td>
</tr>
<tr>
<td>2001</td>
<td>1Gbit</td>
<td>0.16um</td>
<td>production</td>
</tr>
<tr>
<td>2002</td>
<td>2Gbit</td>
<td>0.13um</td>
<td>production</td>
</tr>
<tr>
<td>2004</td>
<td>4Gbit</td>
<td>90nm</td>
<td>production</td>
</tr>
<tr>
<td>2005</td>
<td>8Gbit</td>
<td>70nm</td>
<td>production</td>
</tr>
<tr>
<td>2006</td>
<td>16G</td>
<td>56nm</td>
<td>production</td>
</tr>
<tr>
<td>2007</td>
<td>32G</td>
<td>43nm</td>
<td>production</td>
</tr>
<tr>
<td>2008</td>
<td>32G</td>
<td>32nm</td>
<td>production</td>
</tr>
<tr>
<td>2010</td>
<td>64G</td>
<td>24nm</td>
<td>production</td>
</tr>
<tr>
<td>2012</td>
<td>128G</td>
<td>19nm</td>
<td>production</td>
</tr>
<tr>
<td>2013</td>
<td>128G</td>
<td>1Ynm</td>
<td>production</td>
</tr>
<tr>
<td>2014</td>
<td>128G</td>
<td>1Znm</td>
<td>production</td>
</tr>
<tr>
<td>1988</td>
<td>16Mbit</td>
<td>~0.7um</td>
<td>experimental</td>
</tr>
<tr>
<td>1992</td>
<td>64Mbit</td>
<td>~0.4um</td>
<td>experimental</td>
</tr>
<tr>
<td>1995</td>
<td>256Mbit</td>
<td>0.25um</td>
<td>experimental</td>
</tr>
<tr>
<td>1998</td>
<td>1Gbit</td>
<td>0.16um</td>
<td>experimental</td>
</tr>
<tr>
<td>2001</td>
<td>2Gbit</td>
<td>0.13um</td>
<td>experimental</td>
</tr>
<tr>
<td>2002</td>
<td>4Gbit</td>
<td>90nm</td>
<td>experimental</td>
</tr>
<tr>
<td>2004</td>
<td>8Gbit</td>
<td>70nm</td>
<td>experimental</td>
</tr>
<tr>
<td>2005</td>
<td>16G</td>
<td>56nm</td>
<td>experimental</td>
</tr>
<tr>
<td>2006</td>
<td>32G</td>
<td>43nm</td>
<td>experimental</td>
</tr>
<tr>
<td>2008</td>
<td>32G</td>
<td>32nm</td>
<td>experimental</td>
</tr>
<tr>
<td>2010</td>
<td>64G</td>
<td>24nm</td>
<td>experimental</td>
</tr>
<tr>
<td>2012</td>
<td>128G</td>
<td>19nm</td>
<td>experimental</td>
</tr>
<tr>
<td>2013</td>
<td>128G</td>
<td>1Ynm</td>
<td>experimental</td>
</tr>
<tr>
<td>2014</td>
<td>128G</td>
<td>1Znm</td>
<td>experimental</td>
</tr>
</tbody>
</table>

2D NAND was Litho Driven

- 1991: 2.5 inch 20MB 35KB/sec $50/MB

3D NAND is Etch Driven

- 2019: 20x16x1mm 1TB microSD™ 450MB/sec

© 2020 Western Digital Corporation or its affiliates. All rights reserved.
3D NAND Architecture and Cell
Another dimension to scale – not lithography limited

- 5th Generation – 112-128 Layers
- 6th Generation – 160-176 Layers
The Engine of the 3D NAND Revolution: Charge Trap Cell

Program Performance vs. Gen

2D TLC & 3D QLC Performance

Program Perf
PER PLANE

+20% Per Gen

64L 96L 112L

3D QLC Faster Than 2D TLC

2D TLC

2D NAND

3D NAND

SOURCES: WESTERN DIGITAL ESTIMATES
The Four Vectors of 3D NAND Scaling

Vertical Scaling
- Multi-Tiered Memory Hole
- Thinner Memory Layers

Lateral Scaling
- Memory Hole Density
- Staggering & Overhead Reduction

Architecture Scaling
- Thinner Memory Layers

Logical Scaling
- SLC → MLC → TLC → QLC → PLC
Increasing NAND Industry Capital Intensity

CapEx Per 1% Bit Growth

CapEx Per Incremental Bit

Technology Must Be Affordable to Customers

Source: Yole NAND Market Monitor Q1'22
Design Innovations – Addressing Latency
Asynchronous Independent Plane Read (aIPR) – ISSCC 2021

Synchronous Read in Timing
- Plane 0: TLC Read
- Plane 1: TLC Read
- Plane 2: TLC Read
- Plane 3: SLC Read

Asynchronous Read in Timing
- Plane 0: TLC Read
- Plane 1: SLC Read
- Plane 2: TLC Read
- Plane 3: SLC Read

Random Read Performance
- 2-Plane IPR: +82%
- 2-Plane aIPR: +48%
- 4-Plane aIPR:

More Freedom and Less Delay
For Customer to Access Their Data

Sources: Western Digital Estimates
Tradeoffs Everywhere

Cell Performance, Cell Reliability, GB-Cost Have Trade-Off Relationships

- Slow Performance ↔ Larger Vt Window ↔ Better Reliability
- Faster Performance ↔ Smaller Vt Window ↔ Worse Reliability

Vt Window

Vt

Er

A B C D E F G

Larger Die

Smaller Die

512Gb

1Tb

Larger Die ↔ Overhead % ↓ ↔ Cost ↓
Smaller Die ↔ RC-Delay ↑ ↔ Perf ↓

Cost/GB

BETTER

Program Performance
BETTER

Cost Degrades At Faster Performance

Smaller Cell ↔ Stack Height ↑ ↔ Cost ↑
Larger Cell ↔ Proximity Effects ↓ ↔ Perf ↓
Talk Outline

1. Introduction
2. 3D NAND Flash Scaling
3. The Flash Management
4. The Flash Applications
5. Takeaway
Data Reliability – Paper Analogy

Endurance
How many times can I erase the media and rewrite?

Data Retention
How long can I read the media?
Traditional SSD Hardware Architecture

Traditional (majority) SSD function
Pro:
• Take care all flash management
• Transparent for host to migrate between different flash
Con:
• Host cannot control the performance when internal GC ongoing

FMS 20190806_SSDS-102-1_Marks.pdf
Typical SSD Controller Architecture

- **PCIe/SAS/SATA PHY**
 - PCIe
 - SATA
 - SAS
 - NVMe
 - Sata CMD handler
 - SAS CMD handler

- **Host Selector**
 - CMD XLRFR

- **Host Interface**

- **Processor Sub-System**
 - Processor Core
 - Interconnect Bus
 - Interconnect Data BUS

- **Flash Interface**
 - DRAM
 - ROM
 - UART
 - GPIO
 - Multi-port Arbitor + SRAM controller
 - SRAM
 - LDPC Engines
 - NAND Flash CTRL 01
 - NAND Flash CTRL 02
 - NAND Flash CTRL 03
 - NAND Flash CTRL 04
 - Flash PHY
 - Flash

FMS 20190806_CTRL-102A-1_McIntyre.pdf
Various SSD Control Type

Host System
- Solid State Drive
- Block Meta Data
- Data Buffering
- Wear Leveling
- Error Handling
- Flash Interface
- NAND Media

Host (ZNS)
- Physical Addressing R/P/E
- Solid State Drive
- Block Meta Data
- Data Buffering
- Wear Leveling
- Error Handling
- Flash Interface
- NAND Media

Host (ZNS)
- Physical Addressing R/P/E
- Solid State Drive
- Block Meta Data
- Data Buffering
- Wear Leveling
- Error Handling
- Flash Interface
- NAND Media

Zone Namespace (ZNS)
- Flash Interface
- NAND Media
Zone Names Space

- The storage device logical block addresses are divided into ranges of zones.
- Writes within a zone must be sequential.
- Different Application will write to different zones.

Device LBA range divided in zones

Zone 0 | Zone 1 | Zone 2 | Zone 3 | | Zone X

Application 1 | Application 2 | Application 3

Conventional SSD Controller
LBA Space

Application 1 | Application 2 | Application 3

ZNS SSD Controller
Zoned LBA Space

Write commands advance the write pointer
Reset write pointer commands rewind the write pointer

Write pointer position

IEDM 2019 Tutorial (Western Digital)—Jian Chen
Error Detection and Correction

BCH → LDPC
Data Protection—RAID Scheme

8 Dies

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Defect rate for 8 die strip</th>
<th>Defect rate for 128 die stripe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure rate w/o RAID</td>
<td>1-(1-50ppm)^8 = 400ppm</td>
<td>1-(1-50ppm)^128 = 6400ppm</td>
</tr>
<tr>
<td>Failure rate w RAID</td>
<td>1-(1-50ppm)^8-[1-(1-50ppm)^7]x50ppm = 0.07ppm</td>
<td>1-(1-50ppm)^128-[1-(1-50ppm)^127]x50ppm = 20ppm</td>
</tr>
<tr>
<td>RAID Capacity Overhead</td>
<td>12.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Raid overhead</td>
<td>8/7=1.14</td>
<td>128/127=1.007</td>
</tr>
</tbody>
</table>

128 Dies

|$FMS\ 20190806_ARCH-101-1_Yang.pdf$
Talk Outline

1. Introduction
2. 3D NAND Flash Scaling
3. The Flash Management
4. The Flash Applications
5. Takeaway
Compute-Centric Architecture

Architecture Bottlenecks

- Software cannot keep up with IO
- IO interferes with Applications
- Local resources are stranded
- AI/ML/Analytics need to access larger datasets
Evolution of Data Centers
Data-Centricity Will Drive the Architecture

EARLY TO MID COMPUTE-CENTRIC ERA

HYPERCONVERGED INFRASTRUCTURE

DISAGGREGATED INFRASTRUCTURE

POWERED BY THE FUNGIBLE DPU

LATE COMPUTE-CENTRIC ERA

DATA-CENTRIC ERA

FMS 2020 Fungible Keynote

© 2020 Western Digital Corporation or its affiliates. All rights reserved.
Need to Get the Bits Out!

- **1GB/s PCIe® 3.0**: 2010
- **2GB/s PCIe 4.0**: 2017
- **4GB/s PCIe 5.0**: 2019
- **8GB/s PCIe 6.0**: 2021

Host I/F

- **7 Years**
- **2 Years**

Node-Over-Node

- **NAND I/F**
- **>30%**

Sources: Western Digital Estimates
4 Main trends in Storage for AI

FMS 2020-Dave Eggleston-Intuitive Cognition Consulting

- **Software**
 - Nvidia GPU direct Storage
 - Weka IO file system

- **Computational Storage**
 - NGD ASIC based SSD
 - ScaleFlux FPGA based SSD
 - Samsung FPGA and ASIC based SSD

- **DPU**
 - Nvidia Bluefield DPU + onboard GPU
 - Fungible DPU

- **Memory Tiering**
 - Huge SRAM –Groq TSP
 - Memory network –IBM Power 10
 - PMEM on DDR channel –Intel + Penguin
CXL Interface

New Applications for AI/ML

- Large Data Space by NAND Flash
- Lower Latency by internal DRAM Cache
- Min. 64 bytes data transfer speed
- AI/ML Application optimized solution

Flash Memory Summit 2022 Samsung Keynote
Computational Storage

• Data is
 – Big
 – Growing
 – Valuable

• Moving data to compute is
 – Expensive
 – Power Hungry
 – Best Minimized

• Move compute to storage
 – Bulk of data crunching in storage
 – Results pass back to CPU

FMS 20190808_COMP-302B-1_Bowen.pdf Xilinx
ML Accelerator – Compute in Memory (CIM)

- Memory as Multiplication Engine

Weighted Sums

\[Y_j = \text{Nonlinear Activation Function} \left(\sum_{i=1}^{3} W_{ij} \times X_i \right) \]

- Compute in memory as a Matrix Multiplication Units – can be integrated with Digital processors

[CIMU](#)

Programmable SIMD

Compute and Data flow buffers

Input activations

Storage Element

DAC

Analog logic (mul/add/shift)

ADC

psim/ output activations

CPU (Applications)

On-Chip Network

DRAM

CIMU

CIMU

CIMU

CIMU

CIMU

[IEDM2019]
Opti NAND – HDD Product with Flash Inside

Win FMS 2022 Product Award

• Western Digital has reimagined HDDs with OptiNAND technology, which integrates an iNAND EFD with traditional spinning disk drives and incorporates innovative changes to the firmware algorithm and SoC.

• OptiNAND has broken through the conventional boundaries of storage, adding to Western Digital's legacy of industry-first technologies, enabling customers to navigate the phenomenal worldwide growth in data.
Takeaway
Many Innovations in Data Storage

• NAND continue to scale to meet big data demands
 – Technology is viable
 – Need a lot of investment to continue the scaling

• Big Data era need a new architecture to solve the big data problem
 – Data Centric architecture is evolving rapidly

• Computation will move close to data for energy saving
 – A lot new protocols and new architectures are emerging

• More storage and memory are needed in the AI/ML era
References

• IEDM 2019 Tutorial – Jian Chen
• FMS 2019 Programs
• VLSI-DAT Taiwan April 2019 Yan Li
• Tien-Ju Yang and Vivienne Sze “Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators”
 • YMTC web site http://www.ymtc.com

Western Digital, the Western Digital logo, and OpenFlex are registered trademarks or trademarks of Western Digital Corporation or its affiliates in the US and/or other countries. Apache and Apache Hadoop are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. The NVMe and NVMe-oF word marks are trademarks of NVM Express, Inc. All other marks are the property of their respective owners.