

Software Defined-Radio for Satellite and Inertial-Aided Navigation Mike Horton

CTO, Aceinna Jun 26, 2019

$v(t) = v_0 + \int adt \quad \int_{N_{t+1}}^{\text{State}} \int_{V_t}^{\text{Control input}} Process \text{ noise} \\ \int_{C} B \cdot d\ell = \mu_0 \int_{S} (\vec{J} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}) \cdot d\xi$

Mike Horton

 CTO, Aceinna
 Founder, President and CEO of Crossbow Technology, a leader in MEMS-based inertial navigation systems and wireless sensor networks
 15 patents in inertial navigation technology
 BSEE and MSEE from UC Berkeley

Outline

High-Accuracy vs Consumer GNSS/INS Positioning

- Performance
- Cost
- Ecosystem

"New" vs Traditional High-Accuracy Requirements

- Performance
- Algorithms
- Development Environment

Solutions to New High-Accuracy Requirements

- SDR-Based GNSS for a Multi-Constellation & LEO Future
- Array-based IMU
- Open-Source Tools & Technologies
- Cloud Assisted Algorithms & Corrections

Performance

REQUIREMENT **HIGH-END GNSS INS CONSUMER MOBILE** 2-3m **Position Accuracy** 2cm **GNSS** Loss <30cm for 10-30 sec via Inertial WiFi / Cell Tower Back up to ~100m Measurement Unit A-GPS Service **GNSS** Aiding **RTK or PPP Service** 0.05° 5-10° Heading Heading Method IMU Gyro-Compass or Dual Antennae Magnetometer & Map-Matching GNSS 0.02° 1° Roll/Pitch

Performance Delta ~10²

Cost

REQUIREMENT	HIGH-ACCURACY GNSS INS	CONSUMER MOBILE	
GNSS Receiver Cost	> \$500	< \$1	
IMU (Inertial Measurement Unit)	> \$1000	< \$1	
Antennae	> \$200	< \$1	
CPU & Electronics	\$40	Provided by Phone / FREE	
IP67 Housing	\$200	Provided by Phone / FREE	
GNSS Aiding Service	\$200 - \$500/month	A-GPS Service / FREE	
Cost Delta ~10 ³			

State Control input Process noise $B \cdot d\ell = \mu_0 \int_S (\vec{J} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}) \cdot dS$

Consumer Positioning

Start-up Friendly

Navigation Easy to Integrate for Developers

- Clear Core Mobile SDK
 - Technology "just works" including A-GPS, Wifi/Tower Fall-back
- Clear Plugins (mapbox etc)
- Minimal Algorithm Development Required

> 10 Apps/GNSS Receiver

- Maps, Social, Ride-Share, Recommendation Apps
- Large \$B+ Businesses built on top of GNSS Features in Mobile e.g.,

Uber

High-Accuracy

ut Proces

 $d {m \ell} = \mu_0 \, \int (ec J + \epsilon_0 \, rac{\partial ec E}{\partial t}) \cdot d ec S$

Unfriendly to Start-up Companies

Navigation Hard to Integrate for Developers

- PhD level Algorithm Development
- Custom Drivers
- Limited 3rd Party Tools

1 App/GNSS Receiver

- Aerospace, Construction, Farming
- Market Dominated by Vertically Integrated Solutions Trimble Makes Receiver and End-User Application

New High-Accuracy Requirements are Growin

AI / IoT App

- Difficult Urban Canyon & Indoor Environments
 - Multiple Applications per System
- Friendly to Start-up Companies
- Majority of Developers from non-GNSS background
- GNSS + IMU Integration with CV Oriented Sensors
 LIDAR, Camera, Radar
- Aggressive Cost Targets << \$100</p>
- Additional Safety Certifications Required (ISO26262)

Key Solutions

+ BU + G

 $d {m \ell} = \mu_0 \, \int (ec J + \epsilon_0 \, rac{\partial ec E}{\partial t}) \cdot d {m S} \, d {m S}$

Inertial

- Array Based Approach

GNSS Solution - SDR

- Merge into large GPU

> Open-Source Tools & Technologies

- Simulator
- Open Source Rover SDK

Cloud Assisted Algorithms & Corrections

- LEO Assisted PPP
- Dense Urban RTK Deployment
- 5G

Redundant Inertial Sensor

0.02°/√Hr and < 0.5°/Hr => FOG Grade Performance

Examples: OpenIMU330, $\int_{a} (\vec{J} + a) \frac{\partial \vec{E}}{\partial t} + ds$

Package Type	PN/Certification	Description	Applications
BGA	OpenIMU330BA ASIL-B	BGA-44, SPI/UART, Triple- Redundant 9-axis IMU, 2°/ Hr	L3 Cars & Drones
EZ	OpenIMU400ZA ASIL-B / ASIL-D	SPI/UART, Multiple- Redundant 9-axis IMU, < 1°/ Hr	L4 Cars & FOG Applications

GNSS – Integrated Dual-Frequency

Low-Cost High-Volume Mass-Market IC's are Here

Example:

ST Teseo V-based

L1/L2, L1/L5 _

BeiDou, GALILEO, GPS, GLONASS, QZSS -

Integrated Triple-Redundant IMU (OpenIMU330)

- <2°/Hr

Open source CPU

- Free Tool and Simulation System

OpenRTK330 Data with

Static data test quality from Aceinna OpenRTK330

- 17 hours' static data
- 21 km baseline

In-house RTK engine

- 99.6% fix rate
- 1cm in horizontal
- 2cm in vertical

OpenRTK330 Dynamic Test

ACEINNA OpenRTK330 vs Mainstream Solution

- Car Mounted
- Parking Lot with Trees
- Same Antennae
- RTK Service
- Aceinna's Silicon Valley RTK Trial Network

ACEINNA RTK Engine

- 98.3% Fix Rate

Difference (cm)	68%	95%	99%
Horizontal	2.5	5.2	6.0
Vertical	2.1	4.5	5.1

r(r) = r GNSS SDR

noise $m{eta}\cdot {
m d}m{\ell}=\mu_0\,\int_S(ec{J}+\epsilon_0\,rac{\partialec{E}}{\partial t})\cdot dS$

Open Source Tools => Speedy

https://developers.aceinna.com

https://github.com/Aceinna

RTK/PPP

Traditional Correction Networks

- Expensive
- Proprietary
- Not-well Suited to Urban
- No Processing in Cloud

Solutions

- PPP data should be FREE
- New LEO Ionospheric data improve PPP
- Cloud Processing + Rover RTCM => Scale RTK with minimal fixed infrastructure

voise $egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned}$

Cost Revisited, Cost Delta ~10²

REQUIREMENT	HIGH-ACCURACY GNSS INS
GNSS Receiver Cost	< \$10
IMU (Inertial Measurement Unit)	< \$10
Antennae	< \$10
CPU & Electronics	Provided by Host
IP67 Housing	Provided by Host
GNSS Aiding Service	TBD but Much Cheaper

Low Cost High Accuracy Solution

CHALLENGE	SOLUTION
RECEIVER COST, ACCURACY	GPU Based SDR GNSS, Low-Cost Dual Frequency Consumer Receivers
IMU COST, ACCURACY	MEMS IMU Array, e.g., OpenIMU330
TIME TO MARKET, EASY TO DEVELOP	Open Source Tools and SDK
COST/QUALITY OF CORRECTION DATA	PPP + LEO Combined with Moving Base RTK

