Agenda

- Trends
 - Wearable devices
 - IoT
 - Digital & home health
- Common physiological measurements
- Sensor innovation
- Current challenges
Trends - Growing Markets

1. Wearable devices
2. Internet of Things (IoT)
3. Digital & home health

• This talk: My perspectives from what people are designing and investing in
Wearable Devices Trends

Is it a fad?

Evolutionary change
• Well adopted
 • Jewelry
 • Watches
 • Eyeglasses
 • Hearing aides
 • Smart phones
 • Activity tracking

Explosive growth?
• Driven by Data
• Interconnected data will make them smarter
Wearable Device Innovation

- Watch
 - Apple Watch

- Eyeglasses
 - Snapchat Spectacles

- Hearing Aid
 - Sonitus in the Mouth Hearing Aid
 - FitBit Activity Monitor

- Detection
 - Scanadu Tricorder
Example: “Tricoder”

- Temperature sensing
- Heart rate sensing
- ECG
 - Heart rate variability
 - Pulse wave transit time (blood pressure)
- Oximetry (blood oxygen level)
- Urine analysis
- Stress
Agenda

• Trends
 • Wearable devices
 • IoT
 • Digital & home health
• Common physiological measurements
• Sensor innovation
• Current challenges
IoT Innovation

Connected Pet
Whistle

Connected Home
Roost

Connected Life
Apple Watch

Connected Baby
Hatch Baby

Connected Health
FitBit

Connected Game
Active Mind Golf Tracker
IoT Innovation

- Agriculture
- Drones
- Tractor Guidance
- Auto Backup Camera
- Home Security
- Air Quality Monitor
IoT Innovation

- Smart Outlets
- Smart Locks
- IoT games
- Fall Monitoring for Seniors
- Hearing Aide with Bluetooth
- Game Controller
3 Pillars of IoT

Hardware
- Sensors
- Wireless
- Battery

Software
- Collection
- Alerts

Data Analysis
- Aggregation
- Insight
Scale of IoT Innovation

- Device
- Vehicle
- Building
- City
Agenda

• Trends
 • Wearable devices
 • IoT
 • Digital & home health
• Common physiological measurements
• Sensor innovation
• Current challenges
Innovations in Home Health

- Elder monitor
- FitBit Activity Monitor
- AR glasses
- Sleep analysis
- Eye care
- Bluetooth hearing aid
Future Home Health

• Better function
 • Smart fall monitors for elderly
 • Better passive activity tracking – Is Mom OK?
 • Alzheimer’s tracking
 • Better medication adherence monitoring
• Medical sensors in smart phones will lead to:
 • More medical apps
• Remote health monitoring – growing
• Sterilization – growing
• Implanted sensors – for hearing, now available
Example: Home Dialysis

- Ultraviolet light sterilization of connections
- Connects implanted peritoneal dialysis tube to dialysate bag and drain Bag
- Sensors
 - UV light
 - Enclosure open
What is Holding Back Home Health?

• Elderly Market is Difficult
 • Distribution
 • Ease of Use
 • Acceptance by the Elderly or their children – few early adopters
Agenda

• Trends
 • Wearable devices
 • IoT
 • Digital & home health
• Common physiological measurements
• Sensor innovation
• Current challenges
Sensors Critical To Advances
Rapid Innovation In Sensors

- Growth of sensors and electronics
 - Miniaturization
 - Lower cost
 - Smarter systems
- Advances create new markets which drives more sensor innovation
Market Drivers for Sensors

PAST
- **Automobiles**
 - Since 1980s
 - Cars are full of sensors

PRESENT
- **Smart Phones**
 - Last 10 years
 - Smart phones make sensors wearable

FUTURE
- **Wearable devices**
- **IoT**
- **Home health**
Common physiological measurements

- ECG/EMG
- Heart Rate
- Motion
- Respiration
- Leg Swell
- Blood Pressure
- Body Temperature
- Blood Sugar
- Blood Oxygen
EKG / EMG / EEG

- Measure of electrical and muscle activity
- EKG measurement points have to be rather far apart
 - At least one and a half inches – larger devices needed
 - More leads is better (up to 12 for standard ECG)
- EMG requires accurate placement (millimeters)
 - Measure the wrong muscle
- EEG must use electrodes on the head
Uses of EEG

- Disease diagnosis
- Sleep diagnosis
- Detect mood
- Brain control of devices
Heart Rate

- Measured by
 - ECG electrodes – two are sufficient
 - Pulse oximeter sensing – reflected
 - Transmitted works on finger and ear
 - Pressure sensing of the pulse in the wrist
- Wrist measurement works well for Heart Rate, but not for ECG
Motion

- The most studied and used parameter
- Step counts
- Gait analysis (illness)
- Types of motion (walking, standing, sitting)
- Dead reckoning (9-axis motion)
- Works on wrist, ankle, torso, etc.
 - Different algorithms at different locations
- Motion sensor manufacturers provide advanced software algorithms
Respiration Rate

• Number of breaths per minute
 • Few good locations to measure
• Movement of chest
 • Chest strap
 • Not convenient for a wearable device except shirt
• Thoracic Impedance eliminates chest strap
 • Difficult on wrist
• EKG signal – retain lower frequency
Swelling of Leg

- Detection of water retention – congestive heart failure
- Detection of swelling due to injury
- Detection of problems following knee surgery or knee replacement
- Sense stretching of band around leg
 - Similar to chest strap for respiration
Blood Pressure

• Measure of systolic and diastolic pressure
• Accurate measurement requires pressure cuff that is compressed and released
 • Works on wrist, but inconvenient
• Pulse Transit Time – measure at wrist or elsewhere
 • Currently not medically accurate
• EKG – is it medically accurate?
Body Temperature

• Few good locations to measure core temperature
 • Axilla (under arm) or forehead are best locations
 • Not convenient for a wearable device
• Extremeties (eg wrist) have variable temperature
• Algorithms can partially adjust over time
• Good contact is important – heat flow causes errors
Blood Sugar (Glucose)

- Measure of glucose level in blood sample
- Widely used
- Non-invasive measurement has failed
- Now available as a wearable patch
- Frequent calibration required
- Attempts to not use finger tip – less accurate
- Not accurate on wrist
- Closed loop system replaces the pancreas
 - Control glucose with a pump
Blood Oxygen

- Oxygen saturation in blood
- Measured by pulse oximeter (infra-red) technology
 - Measure loss through body of 2 IR wavelengths
 - Separates changes in blood from other changes
 - Measure pulse at the same time
- Transmissive or reflective measurement
- Reflective for wrist and other places
 - Less accurate, difficult to get a reading
- Transmissive – on finger or ear only
Agenda

- Trends
 - Wearable devices
 - IoT
 - Digital & home health
- Common physiological measurements
- Sensor innovation
- Current challenges
Future Of Sensors

• Chemical sensors
 • Gene detection chips – getting better
 • Lab on a chip – for fluids
 • Liquid Biopsy – detect disease from DNA fragments
 • Paper based - disposable

• Fiber optic sensors
 • Pressure, temperature, strain, force, displacement

• Non-invasive glucose sensor?

• Big data to analyze sensor data
 • Make sensors smarter with software
Fiber Optic Sensors

• **Advantages**
 • Safe – no wires, biocompatible
 • Small – 0.25 mm diameter
 • Operate in harsh Environments, no EMI
 • Use in MRI Machines
 • Multiplex sensors on one fiber
 • Pressure, Strain, Bending, Motion, Temperature
 • Respiration, Heart Rate

• **Disadvantages**
 • Support electronics still expensive
 • Electronics can get cheap in volume
Agenda

- Trends
 - Wearable devices
 - IoT
 - Digital & home health
- Common physiological measurements
- Sensor innovation
- Current challenges
Current Challenges

• Wearables – batteries a major limitation
• Limitations in sensors
• Are you making a medical device?
• Security
Battery Limitations

• Slow pace of improvement
 If improved like semiconductors:
 Size of a pin head, could power your car, cost 1 cent
• Must always work around limitations
 • Long time between charging vs small size
5 Areas That Impact Power

- Wireless transmission
- Displays
- Sensors
- Microprocessors
- Software
Common Ways to Get Data Into the Cloud

1. Device directly to cloud

2. Sensor to gateway to cloud

3. Sensor to cell phone to cloud
Power - How Much? How Far?

<table>
<thead>
<tr>
<th>Distance</th>
<th>10 bytes/sec</th>
<th>1 Kbytes/sec</th>
<th>1 Mbytes/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest power</td>
<td>data rate</td>
<td></td>
</tr>
<tr>
<td>100 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 km</td>
<td></td>
<td></td>
<td>highest power</td>
</tr>
</tbody>
</table>
Power- How Much? How Far?

<table>
<thead>
<tr>
<th>Distance</th>
<th>10 bytes/sec</th>
<th>1 Kbytes/sec</th>
<th>1 Mbytes/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLE/Zigbee</td>
<td>0.15</td>
<td>BLE/Zigbee</td>
</tr>
<tr>
<td></td>
<td>LoRa</td>
<td>0.5</td>
<td>LoRa</td>
</tr>
<tr>
<td></td>
<td>Bluetooth</td>
<td>25</td>
<td>Bluetooth</td>
</tr>
<tr>
<td></td>
<td>WiFi</td>
<td>50</td>
<td>WiFi</td>
</tr>
<tr>
<td>100 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LoRa</td>
<td>0.5</td>
<td>LoRa</td>
</tr>
<tr>
<td></td>
<td>WiFi</td>
<td>100</td>
<td>WiFi</td>
</tr>
<tr>
<td></td>
<td>3G Cellular</td>
<td>100</td>
<td>3G Cellular</td>
</tr>
<tr>
<td></td>
<td>LTE Cellular</td>
<td>100</td>
<td>LTE Cellular</td>
</tr>
<tr>
<td>1 km</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LoRa</td>
<td>1</td>
<td>LoRa</td>
</tr>
<tr>
<td></td>
<td>3G Cellular</td>
<td>120</td>
<td>3G Cellular</td>
</tr>
<tr>
<td></td>
<td>LTE Cellular</td>
<td>120</td>
<td>LTE Cellular</td>
</tr>
</tbody>
</table>

Power in milliWatts
How Much Power Do Sensors Use?

- **Camera chip**: 300mW
- **Illumination for camera at night**: 200mW
- **GPS (Position)**: 20mW
- **Load cell (Weight)**: 10mW
- **Pulse Oximeter (Blood Oxygen)**: 10mW
- **EKG/Heart Rate**: 1mW
- **9-axis Motion Sensor**: 0.5mW
- **Microphone**: 0.1 to 10mW
- **Light Intensity**: 0.1 to 10mW
- **3-axis Accelerometer**: 0.01 to 0.1mW
Are You Making a Medical Device?

- Cell Phone App Can Be A Medical Device
 - FDA Issued Guidelines for Mobile Apps in October 2013
 - FDA Can Force A Company Out of Business for Violating Regulations
- Changing the “Instructions For Use” May Make It Not a Medical Device
 - Pulse Oximeter Example
Consider Whether the Device Is Medical

- Does it sense data or only transmit data?
- Does it diagnose disease or only report data?
- What is the risk of error?
 - Fever thermometer is class I
 - ECG for diagnosis is class II
- Instructions for use may determine if it is a medical device
- Phone apps have special exemptions
Data Security

• The FDA issued a guidance document at the end of 2016 regarding end-to-end security for medical devices.

• End-to-end security requires:
 • Detect a device that is not authorized
 • Ensure the data is valid when received in the cloud
 • From a known device
 • The right data – right time, right user, etc
 • Accurate
 • Store data in the cloud securely
 • Ensure software updates come from right source
Data Security Solutions from Third Parties

- SecureRF Corporation has an encryption algorithm that runs on processors as small as 8 bits.
 - Most algorithms too slow, need powerful processors
- Intrinsic ID Corporation generates secret key from random SRAM power-up state
 - Provides authentication device to cloud
- SecurePush Corporation provides end-to-end solution with
 - System on a chip
 - Mobile app
 - Cloud service
Walt Maclay, Voler Systems
Walt@volersystems.com

Quality Electronic Design & Software
Wearable Devices
Sensor Interfaces
Wireless
Motion Control
Medical Devices