
A New Golden Age for
Computer Architecture:

Domain-Specific Hardware/Software Co-Design,
Enhanced Security, Open Instruction Sets,

and Agile Chip Development

John Hennessy and David Patterson
Stanford and UC Berkeley

13 June 2018
https://www.youtube.com/watch?v=3LVeEjsn8Ts 1

https://www.youtube.com/watch?v=3LVeEjsn8Ts&t=1h15m

Outline
Part I: History of
Architecture -
Mainframes,
Minicomputers,
Microprocessors,
RISC vs CISC, VLIW

Part II: Current
Architecture Challenges -
Ending of Dennard Scaling
and Moore’s Law, Security

2

Part III: Future Architecture Opportunities -
Domain Specific Languages and Architecture,
Open Architectures, Agile Hardware Development

IBM Compatibility Problem in Early 1960s
By early 1960’s, IBM had 4 incompatible lines of computers!
701 ➡ 7094
650 ➡ 7074
702 ➡ 7080
1401 ➡ 7010

Each system had its own:
▪ Instruction set architecture (ISA)
▪ I/O system and Secondary Storage:

magnetic tapes, drums and disks
▪ Assemblers, compilers, libraries,...
▪ Market niche: business, scientific, real time, ...

IBM System/360 – one ISA to rule them all 3

Control versus Datapath
▪ Processor designs split between datapath, where numbers are stored and
arithmetic operations computed, and control, which sequences operations on
datapath
▪ Biggest challenge for computer designers was getting control correct

▪ Maurice Wilkes invented the
idea of microprogramming to
design the control unit of a
processor*
▪ Logic expensive vs. ROM or RAM
▪ ROM cheaper than RAM
▪ ROM much faster than RAM

Condition?

Control

Main Memory

Address Data

Control Lines

Da
ta

pa
th

PC

In
st

. R
eg

.

Re
gi

st
er

s

AL
U

Instruction

Busy?

4
* "Micro-programming and the design of the control circuits in an electronic digital computer,"
M. Wilkes, and J. Stringer. Mathematical Proc. of the Cambridge Philosophical Society, Vol. 49, 1953.

https://people.eecs.berkeley.edu/%7Eculler/courses/cs252-s05/papers/wilkes52.pdf

Microprogramming in IBM 360
Model M30 M40 M50 M65
Datapath width 8 bits 16 bits 32 bits 64 bits

Microcode size 4k x 50 4k x 52 2.75k x 85 2.75k x 87
Clock cycle time (ROM) 750 ns 625 ns 500 ns 200 ns
Main memory cycle time 1500 ns 2500 ns 2000 ns 750 ns
Price (1964 $) $192,000 $216,000 $460,000 $1,080,000

Price (2018 $) $1,560,000 $1,760,000 $3,720,000 $8,720,000

5Fred Brooks, Jr.

IC Technology, Microcode, and CISC
▪ Logic, RAM, ROM all implemented using same transistors
▪ Semiconductor RAM ≈ same speed as ROM
▪ With Moore’s Law, memory for control store could grow
▪ Since RAM, easier to fix microcode bugs
▪Allowed more complicated ISAs (CISC)
▪ Minicomputer (TTL server) example:

-Digital Equipment Corp. (DEC)
-VAX ISA in 1977

▪ 5K x 96b microcode

6

Writable Control Store
▪ If Control Store is RAM, then could tailor “firmware”

to application: “Writable Control Store”
▪ Microprogramming became popular in academia

- Patterson PhD thesis*
- SIGMICRO was for microprogramming**

▪ Xerox Alto (Bit Slice TTL) in 1973
-1st computer with Graphical User Interface & Ethernet

-BitBlt and Ethernet controller in microcode

7
Chuck Thacker

* Verification of microprograms, David Patterson, UCLA, 1976
** “The design of a system for the synthesis of correct microprograms,”
David Patterson, Proc. 8th Annual Workshop of Microprogramming, 1975

https://dl.acm.org/citation.cfm?id=804856

Microprocessor Evolution
▪ Rapid progress in 1970s, fueled by advances in MOS technology,

imitated minicomputers and mainframe ISAs
▪ “Microprocessor Wars”: compete by adding instructions (easy for microcode),

justified given assembly language programming
▪ Intel iAPX 432: Most ambitious 1970s micro, started in 1975

▪ 32-bit capability-based object-oriented architecture, custom OS written in Ada
▪ Severe performance, complexity (multiple chips), and usability problems; announced 1981

▪ Intel 8086 (1978, 8MHz, 29,000 transistors)
▪ “Stopgap” 16-bit processor, 52 weeks to new chip
▪ ISA architected in 3 weeks (10 person weeks) assembly-compatible with 8 bit 8080

▪ IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 was late)

8

▪ Estimated PC sales: 250,000
▪ Actual PC sales: 100,000,000 ⇒ 8086 “overnight” success
▪ Binary compatibility of PC software ⇒ bright future for 8086

Analyzing Microcoded Machines 1980s
▪ World changed to HLL programming from assembly

▪ Compilers now source of measurements
▪ John Cocke group at IBM

▪ Worked on a simple pipelined processor, 801 minicomputer
(ECL server), and advanced compilers inside IBM

▪ Ported their compiler to IBM 370, only used
simple register-register and load/store instructions (similar to 801)

▪ Up to 3X faster than existing compilers that used full 370 ISA!

▪ Emer and Clark at DEC in early 1980s*
▪ Found VAX 11/180 average clock cycles per instruction (CPI) = 10!
▪ Found 20% of VAX ISA ⇒ 60% of microcode, but only 0.2% of execution time!

▪ Patterson after ‘79 DEC sabbatical: repair microcode bugs in microprocessors?**
▪ What’s magic about ISA interpreter in Writable Control Store? Why not other programs?

9

* "A Characterization of Processor Performance in the VAX-11/780," J. Emer and D.Clark, ISCA, 1984.
** “RISCy History,” David Patterson, May 30, 2018, Computer Architecture Today Blog

John Cocke

https://www.cs.auckland.ac.nz/courses/compsci703s1c/archive/2007/resources/EmerClark.pdf
https://www.sigarch.org/riscy-history/

From CISC to RISC
▪ Use SRAM for instruction cache of user-visible instructions

▪ Contents of fast instruction memory change to what application needs now
vs. ISA interpreter

▪ Use simple ISA
▪ Instructions as simple as microinstructions, but not as wide
▪ Compiled code only used a few CISC instructions anyways
▪ Enable pipelined implementations

▪ Further benefit with chip integration
▪ In early ‘80s, could finally fit 32-bit datapath + small caches on a single chip

▪ Chaitin’s register allocation scheme* benefits load-store ISAs

10
*Chaitin, Gregory J., et al. "Register allocation via coloring." Computer languages 6.1 (1981), 47-57.

http://web.eecs.umich.edu/%7Emahlke/courses/583f12/reading/chaitin82.pdf

Berkeley & Stanford RISC Chips

11

RISC-I (1982) Contains 44,420 transistors, fabbed in 5
µm NMOS, with a die area of 77 mm2, ran at 1 MHz

RISC-II (1983) contains 40,760 transistors, was fabbed
in 3 µm NMOS, ran at 3 MHz, and the size is 60 mm2

Stanford MIPS (1983) contains 25,000 transistors, was fabbed in 3 µm &
4 µm NMOS, ran at 4 MHz (3 µm), and size is 50 mm2 (4 µm)
(Microprocessor without Interlocked Pipeline Stages)

Fitzpatrick, Daniel, John Foderaro,
Manolis Katevenis, Howard Landman,
David Patterson, James Peek, Zvi
Peshkess, Carlo Séquin, Robert
Sherburne, and Korbin Van Dyke. "A
RISCy approach to VLSI." ACM
SIGARCH Computer Architecture News
10, no. 1 (1982):

Hennessy, John, Norman Jouppi, Steven
Przybylski, Christopher Rowen, Thomas
Gross, Forest Baskett, and John Gill.
"MIPS: A microprocessor architecture." In
ACM SIGMICRO Newsletter, vol. 13, no.
4, (1982).

https://dl.acm.org/citation.cfm?id=859524
https://www.researchgate.net/profile/Norman_Jouppi/publication/234795328_MIPS_A_microprocessor_architecture/links/00b495185e2fb79958000000/MIPS-A-microprocessor-architecture.pdf

▪ CISC executes fewer instructions per program
(≈ 3/4X instructions),
but many more clock cycles per instruction
(≈ 6X CPI)

⇒ RISC ≈ 4X faster than CISC

“Performance from architecture: comparing a RISC and a CISC with similar hardware
organization,” Dileep Bhandarkar and Douglas Clark, Proc. Symposium, ASPLOS, 1991.

Time = Instructions Clock cycles __Time___
Program Program * Instruction * Clock cycle

“Iron Law” of Processor Performance: How RISC can win

12

http://www-inst.eecs.berkeley.edu/%7Ecs252/sp17/papers/RISC-vs-CISC.pdf

Video of RISC History*

13*Full ACM video is at http://bit.ly/2KKltJ5

http://bit.ly/2KKltJ5
http://www.youtube.com/watch?v=-WkmCinU-y0

CISC vs. RISC Today
PC Era
▪ Hardware translates x86
instructions into internal
RISC instructions
▪ Then use any RISC
technique inside MPU
▪ > 350M / year !
▪ x86 ISA eventually
dominates servers as well
as desktops

PostPC Era: Client/Cloud
▪ IP in SoC vs. MPU
▪ Value die area, energy as much as
performance
▪ > 20B total / year in 2017

▪ x86 in PCs peaks in 2011, now
decline ~8% / year (2016 < 2007)
▪ x86 servers ⇒ Cloud ~10M servers
total* (0.05% of 20B)

▪ 99% Processors today are RISC

14
*“A Decade of Mobile Computing”, Vijay Reddi, 7/21/17, Computer Architecture Today

https://www.sigarch.org/a-decade-of-mobile-computing/

VLIW: Very Long Instruction Word (Josh Fisher)

▪ Multiple operations packed into one instruction (like a wide microinstruction)
▪ Each operation slot is for a fixed function
▪ Constant operation latencies are specified
▪ Architecture requires guarantee of:

▪ Parallelism within an instruction ⇒ no cross-operation RAW check
▪ No data use before data ready ⇒ no data interlocks

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2Int Op 1

15

From RISC to Intel/HP Itanium, EPIC IA-64

▪ EPIC is Intel’s name for their VLIW architecture
▪ “Explicitly Parallel Instruction Computing”
▪ A binary object-code-compatible VLIW
▪ Developed jointly with HP starting 1994

▪ IA-64 was Intel’s chosen 64b ISA successor to 32b x86
▪ IA-64 = Intel Architecture 64-bit
▪ AMD wouldn’t be able to make IA-64, unlike x86, so had to make 64-bit x86

▪ First chip late (2001 vs 1997), but eventually delivered (2002)
▪ Many companies gave up RISC for Itanium since it was widely believed to

be inevitable (Microsoft, SGI, Hitachi, Bull, …)

17

VLIW Issues and an “EPIC Failure”

▪ Compiler couldn't handle complex dependencies in integer code (pointers)
▪ Code size explosion
▪ Unpredictable branches
▪ Variable memory latency (unpredictable cache misses)

-Out of Order techniques dealt with cache latencies
▪ Out of Order subsumed VLIW benefits
▪ “The Itanium approach...was supposed to be so terrific

–until it turned out that the wished-for compilers were
basically impossible to write.”

- Donald Knuth, Stanford
▪ Pundits noted delays and under performance of

Itanium product ridiculed by the chip industry
Itanimum ⇒ “Itanic” (like infamous ship Titanic)

18

Summary Part I: Consensus on ISAs Today

▪ Not CISC: no new general-purpose CISC ISA in 30 years
▪ Not VLIW: no new general-purpose VLIW ISA in 15 years.

VLIW has failed in general-purpose computing arena
▪ Complex VLIW architectures close to in-order superscalar in complexity, no real advantage

on large complex apps
▪ Although VLIWs successful in embedded DSP market

(Simpler VLIWs, easier branches, no caches, smaller programs)

▪ RISC! Widely agreed (still) that RISC principles are best for general purpose ISA!
19

Outline
Part I: History of
Architecture -
Mainframes,
Minicomputers,
Microprocessors,
RISC vs CISC, VLIW

Part II: Current
Architecture Challenges -
Ending of Dennard Scaling
and Moore’s Law, Security

20

Part III: Future Architecture Opportunities -
Domain Specific Languages and Architecture,
Open Architectures, Agile Hardware Development

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Proprietary + Confidential

Fundamental Changes in Technology
• Technology

• End of Dennard scaling: power becomes the key constraint
• Ending of Moore’s Law: transistors improvement slows

• Architectural
• Limitation and inefficiencies in exploiting instruction level

parallelism end the uniprocessor era in 2004
• Amdahl’s Law and its implications end “easy” multicore era

• Products
• PC/Server ⇒ IoT, Mobile/Cloud

21

End of Growth of Single Program Speed?

22

End of
the

Line?
2X /

20 yrs
(3%/yr)

RISC
2X / 1.5

yrs
(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of
Dennard
Scaling

⇒
Multicore
2X / 3.5

yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X /
6 yrs

(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

Moore’s Law in DRAMs

23

Moore’s Law Slowdown in Intel Processors

24

Cost/transistor
slowing down
faster, due to

fab costs.

Technology & Power: Dennard Scaling

Power consumption
based on models in
Esmaeilzadeh
[2011] 25

Energy scaling for fixed task is better, since more and faster transistors

Power consumption
based on models in
“Dark Silicon and the
End of Multicore
Scaling,” Hadi
Esmaelizadeh, ISCA,
2011

http://www.iuma.ulpgc.es/users/nunez/clases-micros-para-com/clases-mpc-slides-links/PH%20COD%20book%20ManyCore%20SMP%20OpenMP/ISCA11%20dark%20silicon%20the%20end%20of%20manycore%20era%20gpu%20etc.pdf

Sorry State of Security
▪ Many protection mechanisms earlier

- Domains, rings, even capabilities
▪ Not well used ⇒ disappeared

- Didn’t seem to help, and lots of overhead
▪ Early hope: SW would eliminate attack vectors

- Perhaps through verification: too hard
- Kernels and microkernels: explosion in size

▪ Cleary, not case for almost all software
- Must build secure systems despite SW bugs!

▪ Hardware must help with security!

26

Example of Current State of the Art: x86
● 40+ years of interfaces leading to attack vectors

○ e.g., Intel Management Engine (ME) processor
■ Runs firmware management system more privileged than system SW
■ “Sadly, and most depressing, there is no option for us users to opt-out

from having this on our computing devices, whether we want it or not.
The author considers this as probably the biggest mistake the PC
industry has got itself into she has ever witnessed.”*

○ e.g., Fuzz testing of x86 potential opcodes**
■ Unknown instruction: freeze processor despite being in user mode

27

* “Intel x86 considered harmful,” Joanna Rutkowska, 2015
** “Breaking the x86 ISA,” Christopher Domas, 2016

https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf

28

Spectre & Computer Architecture
● Definition of instruction set architecture

● “What the machine language programmer must know to properly
write a correct but timing-independent program.”

● Spectre: speculation ⇒ timing attacks that leak ≥10 kb/s
● More microarchitecture attacks on the way*
● Security via resource Isolation? Turn off multithreading
● Spectre is bug in computer architecture definition vs chip
● Need Computer Architecture 2.0 to prevent timing leaks**
* “A Survey of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware,” Qian Ge, Yuval Yarom, David Cock, and Gernot
Heiser, Journal of Cryptographic Engineering, April, 2018
** “A Primer on the Meltdown & Spectre Hardware Security Design Flaws and
their Important Implications”, Mark Hill, 2/15/18, Computer Architecture Today

https://ts.data61.csiro.au/publications/csiro_full_text/Ge_YCH_toappear.pdf
https://www.sigarch.org/a-primer-on-the-meltdown-spectre-hardware-security-design-flaws-and-their-important-implications/

Part II: Challenges Summary

29

▪ Performance improvements are at a standstill
- Slowing Moore’s Law
- No more Dennard Scaling

- Microarchitecture techniques: ILP, multicore, etc. are
inefficient, hence burn energy

▪ State of computer security is embarrassing for
all of us in the computing field
- Seems unlikely systems will ever become secure using

software only solutions

Outline
Part I: History of
Architecture -
Mainframes,
Minicomputers,
Microprocessors,
RISC vs CISC, VLIW

Part II: Current
Architecture Challenges -
Ending of Dennard Scaling
and Moore’s Law, Security

30

Part III: Future Architecture Opportunities -
Domain Specific Languages and Architecture,
Open Architectures, Agile Hardware Development

What Opportunities Left?
▪ SW-centric

- Modern scripting languages are interpreted,
dynamically-typed and encourage reuse

- Efficient for programmers but not for execution
▪ HW-centric

- Only path left is Domain Specific Architectures
- Just do a few tasks, but extremely well

▪ Combination
- Domain Specific Languages & Architectures

31

What’s the Opportunity?
Matrix Multiply: relative speedup to a Python version (18 core Intel)

32
from: “There’s Plenty of Room at the Top,” Leiserson, et. al., to appear.

50X

7X

20X
9X

63,000!

Domain Specific Architectures (DSAs)
• Achieve higher efficiency by tailoring the architecture to

characteristics of the domain
• Not one application, but a domain of applications

-Different from strict ASIC
• Requires more domain-specific knowledge then general purpose

processors need

• Examples:
• Neural network processors for machine learning
• GPUs for graphics, virtual reality
• Programmable network switches and interfaces

33

Why DSAs Can Win (no magic)
Tailor the Architecture to the Domain
• More effective parallelism for a specific domain:

• SIMD vs. MIMD
• VLIW vs. Speculative, out-of-order

• More effective use of memory bandwidth
• User controlled versus caches

• Eliminate unneeded accuracy
• IEEE replaced by lower precision FP
• 32-64 bit bit integers to 8-16 bit integers

• Domain specific programming language

34

Domain Specific Languages
DSAs require targeting of high level operations to the
architecture
● Hard to start with C or Python-like language and recover

structure
● Need matrix, vector, or sparse matrix operations
● Domain Specific Languages specify these operations:

○ OpenGL, TensorFlow, P4
● If DSL programs retain architecture-independence, interesting

compiler challenges will exist
○ XLA

35

“XLA - TensorFlow, Compiled”, XLA Team, March 6, 2017

https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html

Research Opportunities
● General-purpose applications:

○ Make Python run like C with compiler + HW
○ Deja vu: make HLLs fast on RISC

● Domain-specific applications (bigger opportunity?)
○ What are the right DSLs for important applications?
○ Codesign of new DSLs and DSAs
○ Advanced compilation techniques for optimizing the matching:

■ New territory: not extraction of high level structure from C/Fortran but
matching/optimization

● Challenge: not to compromise DSLs with short-term ISA-
specific or microarchitectural-specific compromises

36

Deep learning is causing
a machine learning revolution

From “A New Golden Age in
Computer Architecture:
Empowering the Machine-
Learning Revolution.” Dean,
J., Patterson, D., & Young, C.
(2018). IEEE Micro, 38(2),
21-29.

https://ieeexplore.ieee.org/abstract/document/8259424/

Tensor Processing Unit v1
Google-designed chip for neural net inference

In production use for 36 months: used by billions on
search queries, for neural machine translation,
for AlphaGo match, …

In-Datacenter Performance Analysis of a Tensor Processing
Unit, Jouppi, Young, Patil, Patterson et al., ISCA 2017,

http://arxiv.org/abs/1704.04760

TPU: High-level Chip Architecture
▪ The Matrix Unit: 65,536 (256x256) 8-bit multiply-

accumulate units

▪ 700 MHz clock rate

▪ Peak: 92T operations/second

▪ 65,536 * 2 * 700M

▪ >25X as many MACs vs GPU

▪ >100X as many MACs vs CPU

▪ 4 MiB of on-chip Accumulator memory

▪ 24 MiB of on-chip Unified Buffer (activation
memory)

▪ 3.5X as much on-chip memory vs GPU

▪ Two 2133MHz DDR3 DRAM channels

▪ 8 GiB of off-chip weight DRAM memory 39

Perf/Watt TPU vs CPU & GPU

43

Measure performance of
Machine Learning?

See MLPerf.org (“SPEC for ML”)
● Benchmark suite being

developed by
○ ≥7 companies and

≥5 universities
○ To be released 7/1/18

Part III: DSL/DSA Summary

45

▪ Lots of opportunities
▪ But, new approach to computer architecture is needed.
▪ The Renaissance computer architecture team is

vertically integrated. Understands:
- Applications
- DSLs and related compiler technology
- Principles of architecture
- Implementation technology

▪ Everything old is new again!

46

Part III: Open Architectures

● Why open source compilers and
operating systems but not ISAs?

● What if there were free and open
ISAs we could use for everything?

RISC-V Origin Story

▪ UC Berkeley Research using x86 & ARM?
▪ Impossible – too complex and IP issues

▪ 2010 started “3-month project” to develop
own clean-slate ISA

▪ Krste Asanovic, Andrew Waterman, Yunsup Lee, Dave Patterson

▪ 4 years later, released frozen base user spec
Why are outsiders complaining about
changes of RISC-V in Berkeley classes?

47

● Supports specialization
○ Vast opcode space reserved

● Community designed
○ Base and standard extensions

finished
○ Grow via optional extensions

vs. incremental required features

● RISC-V Foundation
extends ISA for
technical reasons
○ vs. private corporation for

internal (marketing) reasons

What’s Different About RISC-V?

● Simple
○ Far smaller than proprietary ISAs
○ 2500 pages for x86, ARMv8

manual vs 200 for RISC-V manual

● Clean-slate design
○ 25 years later, so can learn from

mistakes of predecessors
○ Avoids µarchitecture or

technology-dependent features

● Modular
○ Small standard base ISA
○ Multiple standard extensions 48

RISC-V Base Plus Standard Extensions

● A few base integer ISAs
○ RV32E, RV32I, RV64I

■ RV32E is 16-reg subset of RV32I
○ <50 hardware instructions in base

(Similar to RISC-I!*)

● Standard extensions
○ M: Integer multiply/divide
○ A: Atomic memory operations
○ F/D: Single/Double-precision Fl-point
○ C: Compressed Instructions (<x86)
○ V: Vector Extension for DLP (>SIMD**)

49

● Standard RISC
encoding in fixed 32-bit
instruction format

● Supported forever by
RISC-V Foundation

* “How close is RISC-V to RISC-I?” David Patterson, 9/19/17, ASPIRE Blog
** “SIMD Instructions Considered Harmful,” David Patterson and Andrew Waterman, 9/18/17

https://aspire.eecs.berkeley.edu/2017/06/how-close-is-risc-v-to-risc-i/
https://www.sigarch.org/simd-instructions-considered-harmful/

Foundation Members since 2015

50

51

Foundation Working Groups (partial list)

Bit Manipulation Compliance Debug Memory Model

Privileged Spec Vector Security Base ISA/Opcode

52

NVDLA: An Open DSA and Implementation
● NVDLA: NVIDIA Deep Learning

Accelerator for DNN Inference
● Free & Open: All SW, HW, and

documentation on GitHub
● Scalable, configurable design

● Each block operates independently
or in pipeline to bypass memory

● Data type configurable: int8, int16, fp16,
● 2D MAC array configurable:

8 to 64 x 4 to 64
● Size scales 6X (0.5 - 3mm2), power scales 15X (20 - 300 mW)

● RISC-V core as host (optional)

53

Security and Open Architecture
● Security community likes verifiable (no trap doors*),

alterable, free and open architecture and implementations
● Equally important is number of people and organizations

performing architecture experiments
● Want all the best minds to work on security

● Plasticity of FPGAs + open source RISC-V implementations
and SW ⇒ novel architectures can be deployed online,
evaluated, & iterated in weeks vs years (even 100 MHz OK)

● RISC-V may become security exemplar via HW/SW
codesign by architects and security experts

* Sturton, C., Hicks, M., Wagner, D., & King, S. T. (2011). “Defeating UCI:
Building stealthy and malicious hardware,” IEEE Symp. on Security and Privacy.

http://www.ieee-security.org/TC/SP2011/PAPERS/2011/paper005.pdf

Part III: Open Architecture Summary
▪ Free/open architectures ⇒ no proprietary lock-in,

no contracts before start, anyone can use/buy/sell
▪ Typically simpler as not marketing driven (helps verification,
security) > area/power/performance at low end and = at high end
▪ Readily and freely extensible (support DSAs)
▪ More organizations designing processors (open source)

⇒ Faster innovation, more competitive marketplace
▪ Will become primary experimental vehicle of security experts?

Open Architecture Goal
Create industry-standard open ISAs for all computing devices

“Linux for processors”
54

Agile Hardware Development
▪ Agile: small teams do short development

between working but incomplete prototypes and
get customer feedback per step

▪ Scrum team organization
- 5 - 10 person team size
- 2 - 4 week sprints for next prototype iteration

▪ New CAD enables SW Dev techniques to make
small teams productive via abstraction & reuse

55

Reuse: Shared Lines of RTL Code (Chisel)
RISC-V Core Z-scale Rocket BOOM
Description 32-bit

3-stage pipeline
in-order

1-instruction
issue

L1 caches
(≈ ARM Cortex-M0)

64-bit, FPU, MMU
5-stage pipeline

in-order
1-instruction

issue
L1 & L2 caches

(≈ ARM Cortex-A5)

64-bit, FPU, MMU
5-stage pipeline

out-of-order
2-, 3-, or 4- instruction issue

L1 &L2 caches
(≈ ARM Cortex-A9)

Unique LOC 600 (40%) 1,400 (10%) 9,000 (45%)
LOC all 3 share 500 (30%) 500 (5%) 500 (5%)
LOC Z-scale & Rocket
share

500 (30%) 500 (5%) ---

LOC Rocket & BOOM
share

--- 10,000 (80%) 10,000 (50%)

Total LOC 1,600 12,400 19,500
56

Agile Hardware Dev. Methodology

C++

FPGA

ASIC Flow

Tape-in

Tape-out

Big Chip
Tape-out

Small chip
tape-out 100
chips 1x1mm
@ 28nm is
affordable at
$14,000!

57

Lee, Y., Waterman,
A., Cook, H.,
Zimmer, B., Keller,
B., Puggelli, A., ...
& Chiu, P. F.
(2016). “An agile
approach to
building RISC-V
microprocessors.”
IEEE Micro, 36(2),
8-20.

AWS FPGA
F1 instance ⇒
develop new
prototypes
using cloud
(nothing to
buy)

https://pdfs.semanticscholar.org/9f5b/4ff82ac9bbc2a64f4eab306ea1299f1498c8.pdf

Four 28nm & Six 45nm
RISC-V Chips taped out in 5 years

Raven-1 Raven-2
Raven-3

Raven-3.5

EOS14

EOS16

EOS18

EOS20

EOS22 EOS24

2011 2012 2013 2014 2015
May Apr Aug Feb Jul Sep Mar Nov Mar

Raven: ST 28nm FDSOI
EOS: IBM 45nm SOI

1 core + vector coprocessor
1.0 GHz (adaptive-clocking)
34 DP GFLOPS / Watt

2 cores, 1.7 GHz,
15 DP GFLOPS / Watt

58

Conclusion: A New Golden Age
▪ End of Dennard Scaling and Moore’s Law
⇒ architecture innovation to improve performance/cost/energy
▪ Security ⇒ architecture innovation too
▪ Domain Specific Languages ⇒ Domain Specific Architectures
▪ Free, open architectures and open source implementations
⇒ everyone can innovate and contribute
▪ Cloud FPGAs ⇒ all can design and deploy custom “HW”
▪ Agile HW development ⇒ all can afford to make (small) chips
▪ Like 1980s, great time for architects in academia & in industry!

59

Questions?

60

“Chip Technology's
Friendly Rivals,”
John Markoff,
New York Times,
June 4, 1991

“RISC Management,”
Leah Hoffmann,
CACM, June 2018

“Rewarded for RISC,”
Neil Savage,
CACM, June 2018

Video: David
Patterson and John
Hennessy, 2017 ACM
A.M. Turing Award
https://cacm.acm.org/
videos/2017-acm-
turing-award

https://www.nytimes.com/1991/06/04/business/chip-technology-s-friendly-rivals.html
https://cacm.acm.org/magazines/2018/6/228042-risc-management/fulltext
https://cacm.acm.org/magazines/2018/6/228042-risc-management/fulltext
https://cacm.acm.org/videos/2017-acm-turing-award

UC Berkeley CS Division Turing Award Projects 1970-90

IEEE
754

floating-
point

standard

RISC
I - IV Probabilistic

encryption
Pseudorandom number

generation theory

Postgres
database

NP-
completeness

1985

Karp

Computational
complexity

1995

Blum
1989

Kahan

2017

Patterson

2012

Goldwasser & Micali

2014

Stonebraker

Seven independent research projects between 1970 and 1990 in the
UC Berkeley Computer Science Division of ≈25 faculty won ACM Turing
Awards (“Nobel Prize of Computer Science”).

“Given this data, I think you could make the case that the greatest team
of Computer Science researchers ever assembled at one place and time
was at Berkeley in the 1980s.” – Prof. John Ousterhout, Stanford University

Not included are seven Turing Award contributions done elsewhere by forner UC
Berkeley grad students (Adelman, Engelbart, Gray, Lampson, Thacker, Thompson, Wirth)
or three done elsewhere by former UC Berkeley faculty (Cook, Feigenbuam, Scott)

2000

Yao

	A New Golden Age for �Computer Architecture:Domain-Specific Hardware/Software Co-Design, Enhanced Security, Open Instruction Sets, �and Agile Chip Development
	Outline
	IBM Compatibility Problem in Early 1960s
	Control versus Datapath
	Microprogramming in IBM 360
	IC Technology, Microcode, and CISC
	Writable Control Store
	Microprocessor Evolution
	Analyzing Microcoded Machines 1980s
	From CISC to RISC
	Berkeley & Stanford RISC Chips
	“Iron Law” of Processor Performance: How RISC can win
	Video of RISC History*
	CISC vs. RISC Today
	VLIW: Very Long Instruction Word (Josh Fisher)
	From RISC to Intel/HP Itanium, EPIC IA-64
	VLIW Issues and an “EPIC Failure”
	Summary Part I: Consensus on ISAs Today
	Outline
	Fundamental Changes in Technology
	End of Growth of Single Program Speed?
	Moore’s Law in DRAMs
	Moore’s Law Slowdown in Intel Processors
	Technology & Power: Dennard Scaling
	Sorry State of Security
	Example of Current State of the Art: x86
	Spectre & Computer Architecture
	Part II: Challenges Summary
	Outline
	What Opportunities Left?
	What’s the Opportunity?
	Domain Specific Architectures (DSAs)
	Why DSAs Can Win (no magic)�Tailor the Architecture to the Domain
	Domain Specific Languages
	Research Opportunities
	Deep learning is causing�a machine learning revolution
	Tensor Processing Unit v1
	TPU: High-level Chip Architecture
	Perf/Watt TPU vs CPU & GPU
	Part III: DSL/DSA Summary
	Part III: Open Architectures
	RISC-V Origin Story
	What’s Different About RISC-V?
	RISC-V Base Plus Standard Extensions
	Foundation Members since 2015
	Foundation Working Groups (partial list)
	NVDLA: An Open DSA and Implementation
	Security and Open Architecture
	Part III: Open Architecture Summary
	Agile Hardware Development
	Reuse: Shared Lines of RTL Code (Chisel)
	Agile Hardware Dev. Methodology
	Four 28nm & Six 45nm�RISC-V Chips taped out in 5 years
	Conclusion: A New Golden Age
	Questions?
	UC Berkeley CS Division Turing Award Projects 1970-90

