IS IT A SMART OR CONNECTED OR IOT PRODUCT?

IEEE - CNSV
bruce@iot-inc.com

Tokyo <-> Montreal

© Iot-Inc 2017. Do not distribute without explicit permission.
Bruce Sinclair

Consultant, publisher of www.iot-inc.com and author

I will provide you with an overview of the Internet of Things and contrast it with, smart & connected

For IEEE-CNSV attendees only

Product Types

SMART

CONNECTED

INTERNET
System Overview

Engineering view

Data Format
- Binary, JSON, CBOR

Application Layer
- CoAP, MQTT, Wi-Fi, AMQP

Transport Layer
- UDP, TCP

Internet Layer
- IPv6/IPv4 Routing

Network/Link Layer
- IEEE 802.15.4, Wi-Fi, Physical Radio

Design view

- Front end
 - User touch points
- Enabling Infrastructure
- Back end
 - Admin touch points

Business view

1. Software-defined product
2. Hardware-defined product
3. Connected by a network fabric
4. Interfaced with external systems
5. Secured and private
System Overview

Business view

- Don't focus on the things, focus on value
- SDP is the value generator
- All other components support the SDP
- Supported by the science of cyber-physical systems

Building Your IoT Business

SOFTWARE-DEFINED PRODUCT
Software-defined Product

Overview

- Consists of a cyber model & product application
- Similar to SDN – abstracts the physical
- Simulation of non-physical functionality
- The added value of the IoT product

Value

Dry clothes as quickly as possible or for as cheap as possible while maintaining their integrity

- Value model
 - Time/energy = f (ventilation, heat, pricing)
 - Time/energy = f (fan speed, angular velocity, heater temperature, drum temperature, energy pricing)
- App
 - Interrogates model and actuates hardware-defined product
- Analytics
 - Build models linking pivot variables to results
 - Descriptive analytics to report on cost savings
 - Predictive analytics to estimate when clothes will be dried
Product Types

- SMART
- CONNECTED
- IOT

Building Your IoT Business

HARDWARE-DEFINED PRODUCT
Hardware-defined Product

Embedded system
- Stores and executes local app
- Manages communication with sensors in OT network

Connected sensors/actuators
- Sensors: DC energy is converted with an A/D converter
- Actuators: digital signal is converted with D/A converter
- Greenfield or Brownfield deployments

© Iot-Inc. 2017 www.brucesinclair.net/cnsv

Building Your IoT Business

NETWORK FABRIC

© Iot-Inc 2017. Do not distribute without explicit permission.
Network Fabric

Overview
- Protocols
- Operational Technology (OT) network
- Information Technology (IT) network
- Backhaul
- Product cloud
- The IoT Platform

Network fabric

Protocols

1. MEDIA LAYER
 The interface that transmits data over the air. Commonly uses 802.15.4, Zigbee, ZWave, Bluetooth. Can also be Ygw4 or WiFi.

2. NETWORK LAYER
 The processing of the sensor data for transport over the network. Commonly uses Zigbee, 802.15.4, ZWave, Bluetooth. Protocols and hundreds of other older communication protocols.

3. APPLICATION LAYER
 The format of the data within the package for consumption by the appropriate service delivery. Commonly uses CoAP, AMQP, MQTT, XMPP, and DDS.

THE THREE NESTED LAYERS OF IOT NETWORKING
Network Fabric

Overview

- Protocols
- Operational Technology (OT) network
- Information Technology (IT) network
- Backhaul
- Product cloud
- The IoT Platform

Building Your IoT Business

EXTERNAL SYSTEMS
External Systems

Analytics
External data
Business systems
IoT products
IoT Technology Evolution

Bruce Sinclair

Free resources: www.iot-inc.com
My services: www.brucesinclair.net
My book will be published in June
bruce@iot-inc.com

Download report and presentation at: www.brucesinclair.net/cnsv

© Iot-Inc 2017. Do not distribute without explicit permission.