How Non-Volatile Memory Became the World’s Most Valuable Semiconductor Storage
A Conversation with Eli Harari, Stefan Lai and Jeff Katz

Led by Brian Berg
Chair, IEEE SCV Technology History Committee; R6 Milestone Coordinator
30 September 2015
Thank You to our sponsor!

Doron Noyman will say a few words

Happy Banking!

Free Checking ■ Car Loans ■ Mortgages ■ Credit Cards

KPCU.COM
Our Panel of Speakers: Dr. Eli Harari

- Worked at Intel (‘79–’81); 1988: founded SunDisk (renamed SanDisk) - was CEO and Chairman
- 150 issued patents; many technical papers
- 2004 Ernst & Young Entrepreneur of the Year Lifetime Award
- 2006 IEEE Reynold B. Johnson Data Storage Device Tech. Award
- 2008 GSA (Global Semiconductor Alliance) Dr. Morris Chang Exemplary Leadership Award
- 2009 IEEE Robert N. Noyce Medal for Exceptional Contributions to the Microelectronics Industry
- 2011: Consumer Electronics Hall of Fame
- Member: National Academy of Engineering
- 2014: National Medal of Technology and Innovation (from President Obama)
Our Panel of Speakers: Dr. Stefan Lai

- IBM (1979-1982): researched silicon-silicon dioxide interface properties at IBM Yorktown TJ Watson Research Center
- Intel (1982-2006): developed scalable EEPROM; co-invented the hugely successful EPROM tunnel oxide (ETOX) flash memory cell
- Through 10 generations of ETOX technologies (1983-2006), achieved 1000X cell size reduction
- 1998: IEEE Fellow for “distinguished research on the properties of silicon MOS interfaces and development of Flash EPROM Memory”
- 2008: IEEE Andrew S. Grove Award for “contributions to the development and advancement of flash memory technology that has spurred the success and popularity of several consumer electronics devices including the USB flash drive”
Our Panel of Speakers: Jeff Katz

 - At Intel, served in various microprocessor, microcontroller, ASIC and memory Marketing and Operational roles
 - At Atmel, served as Chief Marketing Officer and did product definition and market development for a broad range of non-volatile memories (including EPROM, EEPROM and Flash) as well as several families of Flash-based microcontrollers

- Computer History Museum (CHM) (2004-present):
 - Instrumental in CHM’s Semiconductor Special Interest Group, which collects artifacts and Oral Histories of seminal chip products
 - Has captured the human and technical stories of virtually every key NVM technology innovator
1967: Invention of the Floating Gate

- Dawon Kahng and Simon Sze at Bell Labs
- What would happen if a MOSFET was built with extra layers like the layers in a cake?
Phase Change Memory (PCM)

- 1969: Inventor: Charles Sie at Iowa State Univ.
 - 1 vs. 0 stored via amorphous vs. crystalline state
- 1970: early PCM work by Gordon Moore at Intel
- Late 80s: PCM used in Panasonic optical disks
- 1999: Stefan Lai started Intel alternative memory team
- **RUMOR**: Intel and Micron will use PCM in 3D XPoint technology
1970: Invention of the EPROM

- Dov Frohman-Bentchkowski at Intel
- “FAMOS” transistor; erase entire device with UV light
- Rcvd. IEEE Edison Medal; Nat’l. Inv. Hall of Fame

MEMORY BEHAVIOR IN A FLOATING-GATE AVALANCHE-INJECTION MOS (FAMOS) STRUCTURE

D. Frohman-Bentchkowsky

Intel Corporation, 365 Middlefield Road, Mountain View, California 94040
(Received 28 December 1970)
1976: Harari – First EEPROM Patent

3/26/76: a functional EEPROM with thin SiO₂

United States Patent

Harari

ELECTRICALLY ERASABLE NON-VOLATILE SEMICONDUCTOR MEMORY

Inventor: Eliyahou Harari, Irvine, Calif.
Assignee: Hughes Aircraft Company, Culver City, Calif.

Appl. No.: 770,346
Filed: Feb. 22, 1977

Conductor Memories” Session 4, 1972 Wescon Technical Papers.
Rapp; “Silicon on Sapphire” Electronics Products Magazine (1/15/73), pp. 83–84.

Primary Examiner—Gerald A. Dost
Attorney, Agent, or Firm—George Tacticos; W. H. MacAllister

ABSTRACT

A non-volatile semiconductor storage device comprising a dual gate field effect transistor in which an electrically floating gate acts as a charge storage medium. An insulating layer of an appropriate dielectric material separates the floating gate from the active portion of the transistor. A predetermined section of this insulating layer is relatively thin to permit this section of the float-

ing only a dry oxygen ambient. The resulting silicon dioxide layer 54 in opening 52 will have a thickness typically in the range of 20 to 100 Å. The actual temper-
1976: Toshiba: EEPROM Paper (device never operational)

- Co-authored by Masuoka (‘84: Flash inventor)
- “SAMOS” transistor with 2000 Å thick SiO2

Electrically Alterable Avalanche-Injection-Type MOS READ-ONLY Memory with Stacked-Gate Structure

HISAKAZU IIZUKA, FUJIO MASUOKA, TAI SATO, AND MISTUAKI ISHIKAWA

The drain avalanche-breakdown voltage under zero gate bias is \(-38\) to \(-40\) V for a gate oxide 2000 Å thick before walk-out [8]. The electric field \(E_1\) decreases linearly as increasing \(V_D\) [3].

Both of the gate-oxide thickness are 2000 Å. Elemental parameters are as follows:
1976-77: Invention of a Practical and Reliable EEPROM

- Eli Harari at Hughes Microelectronics
- Experiments determined that thin SiO2 (90-100 Å) was optimal for a practical, reliable and manufacturable EEPROM with proper endurance based on F-N tunneling

Dielectric breakdown in electrically stressed thin films of thermal SiO₂

Eli Harari

Newport Beach Research Center, Hughes Aircraft Company, Newport Beach, California 92663
(Received 8 August 1977; accepted for publication 8 November 1977)

A novel technique is described which was used to study the intrinsic breakdown mechanism in films of thermal SiO₂ in the thickness range 30–300 Å. It was determined that high-field and high electron
Milestone recognizes how thin SiO2 enabled (1) first practical FG EEPROM, (2) flash memory, and ultimately (3) data storage in flash memory.
George Perlegos
- 1974: joined Intel to work with Dov Frohman
- 1974: 1st NMOS EPROM (for 8080)
- 1975: 1st 5V-only EPROM (for 8085)
- 1977-78: created FLOTOX, the first commercially successful EEPROM

Intel still wanted to pursue EPROM, not EEPROM
- 1978: group led by Rafi Klein formed Xicor ("eX Intel Corp. company") to pursue EEPROM
- Group included Julius Blank of Fairchild’s “Traitorous Eight”
Intel still wanted to pursue EPROM, not EEPROM
- 1981: When team moved to Folsom, George Perlegos, Phil Salsbury, Gordon Campbell quit
They formed SeeQ
- “EE is our middle name”
- Solved EEPROM’s high voltage requirement
- Plus: new EEPROM as easy to use as SRAM
- Minus: expensive, slow, limited endurance
SeeQ thrived, expanded into logic products
Intel/Xicor/SeeQ/Atmel (3 of 3)

- 1984: George Perlegos left SeeQ
 - Formed Chips and Technologies
 - Left C&T and formed **Atmel**

- **Atmel**
 - Developed:
 - CMOS EEPROM (first such device from Hughes in ‘81)
 - Intel-compatible CMOS EPROM
 - Late ‘80s: NOR Flash
 - Early ‘90s: 1st Flash Microcontrollers (very successful)
 - 1994: acquired SeeQ’s EEPROM business
 - Likely to be acquired by UK-based Dialog Semi
1971: 1st job at Toshiba
Tasked with EPROM development in wake of Dov Frohman’s single-gate EPROM ISSCC paper
1973: gave ISSCC paper on double-gate EPROM w/ 100x faster programming time
Mid ‘70s to early ‘80s: DRAM investigation
Masuoka: NOR Flash

- 1984: IEDM paper introduced NOR Flash
 - First simultaneously erasable NV memory
 - An entire chip could be erased at once, like the “flash” of a camera

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EEPROM</th>
<th>Flash EEPROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors/cell</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Programmability</td>
<td>Byte</td>
<td>Byte</td>
</tr>
<tr>
<td>Erasability</td>
<td>Byte</td>
<td>Entire Device</td>
</tr>
<tr>
<td>2 Micron Lithography</td>
<td>272 sq. microns</td>
<td>64 sq. microns</td>
</tr>
<tr>
<td></td>
<td>F-N tunneling</td>
<td>Hot electron injection (as proposed)</td>
</tr>
</tbody>
</table>
Fujio Masuoka: NAND Flash

1986
- TI filed patent infringement suit against Toshiba re: DRAM products
- Masuoka testified at International Trade Commission (ITC) trial in Wash., DC
- Was bored during trial
- He spent idle time thinking about NAND Flash
- Wrote 5 NAND Flash patents during this time

1987: NAND Flash published in IEDM Paper
Stefan Lai’s Journey

- Joined Intel in 1982
- EPROM was a big business for Intel
- Most key EPROM people had left for startups
 - 1978: Rafi Klein and crew left + formed Xicor
 - 1981: when EPROM team moved to Folsom, George Perlegos and crew left + formed SeeQ
 - 1981: Eli Harari left, telling Gordon Moore:

 “Some form of EEPROM will replace EPROM, so pursue EEPROM aggressively!”
Stefan Lai: NVM Work at Intel

- When hired: find out how to scale EEPROM
 - Wanted a simple and practical EEPROM
- Looked to ETOX (EPROM Tunnel Oxide)
 - Conceived at Intel in late 1983 (another EEPROM project had failed)
 - ETOX used thin SiO2 (100 Å):

```plaintext
ETOX FLASH CELL

SELECT GATE

FLOATING GATE

325 Å

SOURCE       DRAIN

SUBSTRATE

EPROM CELL

SELECT GATE

FLOATING GATE

100 Å

SOURCE       DRAIN

SUBSTRATE
```
Stefan Lai: NVM Work at Intel

- Mid-1984:
 - ETOX working cell demonstrated
 - E2EPROM (electrically erased EPROM with byte erasure) was proposed, but the Intel business unit wanted EEPROM

- 8/85: Intel teams with Xicor for EEPROM using triple polysilicon tunneling

- ETOX continued as a “skunk” works project
 - Supported by Dick Pashley, GM of new E2 business unit
ETOX: NOR Flash Instead of EEPROM

1987 (after 2 years):
- Xicor and ETOX projects both successful
- Xicor required 3 transistors/cell
- ETOX economics best; Xicor program killed

ETOX Productized as 256Kb NOR Flash
- Late ’87: samples / Early ’88: ISSCC paper
- 4/88: formal product intro in Paris
 - Demo: digital photos stored in proprietary flash cards
- Block-erasable device at 1.5 um
ETOX’s Success

- **1987-91:**
 - ETOX NOR Flash quadruples every year
 - 1991 sales: about $100M

- **9/89:**
 - Psion introduces the world’s first Flash Card-based Mobile Computer
 - Joint Intel (Flash Memory) / Microsoft (Flash File System Software) announcement

- **2/92:**
 - Intel and Sharp are mfg. and development partners for 2 product generations
ETOX MLC Product

- 2/95: ISSCC
 - First paper re: a Multi-Level Cell (MLC) product
 - MLC is >1 bit per FG transistor
1986-2006: ETOX NOR Cell Shrinkage Over 10 Generations (800x)

- 1986: 36 sq. um ; 2006: .0457 sq. um
Intel: EPROM v. NOR Flash Sales

- 1979: Dov Frohman hires Eli at Intel
- 1981: EEPROM SSD proposal while at Intel
 - Rejected by CEO Andy Grove
- 1983-88: Wafer Scale Integration
 - Co-founder; Goal: WaferDisc: EEPROM SSD
- 3/1/88: Founded SunDisk (renamed SanDisk)

- 6/8/1988: filed patent application
 - MLC: > 1 bit per FG (Intel MLC NOR in ‘95)
 - Intelligent erasure for high endurance
 - Flash SSD to emulate magnetic HDD

Patent Number: 5,095,344
Date of Patent: Mar. 10, 1992
4/13/1989: filed patent application
- “System-Flash”
- Intelligent flash management with CPU and firmware

ABSTRACT
A system of Flash EEPROM memory chips with controlling circuits serves as non-volatile memory such as that provided by magnetic disk drives. Improvements include selective multiple sector erase, in which any combinations of Flash sectors may be erased together. Selective sectors among the selected combination may also be de-selected during the erase operation. Another improvement is the ability to remap and replace defective cells with substitute cells. The remapping is performed automatically as soon as a defective cell is detected. When the number of defects in a Flash sector becomes large, the whole sector is remapped. Yet another improvement is the use of a write cache to reduce the number of writes to the Flash EEPROM memory, thereby minimizing the stress to the device from undergoing too many write/erase cycling.
System-Flash

- Architecture included:
 - Error correction and dynamic defect mapping
 - Wear-leveling
 - Logical-to-physical mapping
 - Low stress write and erase voltages
 - Intelligent caching: speed, and write reduction
 - Garbage collection
 - Repair of disturbed cells
 - Magnetic disk drive interface

- Key feature: Data Header
 - “Overhead data” to allow management
Getting System-Flash to Market

- Marketplace acceptance criteria:
 - Host-independent plug-compatible disk drive replacement
 - 1 million read/write cycles

- Criteria only possible with:
 - Dedicated hardware controller and firmware
 - High-endurance flash with embedded header
 - Stress of write/erase voltages controlled by header data

- Mass acceptance required price reduction
 - MLC Flash (multi-bits/cell)
 - Switch from NOR to higher-density NAND
 - Moore’s Law
1991: First ATA SSD
- 20MB; $1000
- ATA device
- 2.5” form factor
- 1st customer:
 - GRiD for GRiDPad pen computer
- IBM:
 - Contract for HDD replacement for 10,000 ThinkPads
Flash Sales: NOR v. NAND

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR</td>
<td>.865</td>
<td>2.20</td>
<td>9.71</td>
<td>6.35</td>
<td>2.00</td>
</tr>
<tr>
<td>NAND</td>
<td>.285</td>
<td>.924</td>
<td>5.39</td>
<td>28.23</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.865</td>
<td>2.49</td>
<td>10.64</td>
<td>11.74</td>
<td>30.24</td>
</tr>
</tbody>
</table>

NAND & NOR Flash Revenues

![Graph showing NAND and NOR Flash Revenues from 1994 to 2014](image)
Cellphones: The Impact of Flash

- Early ‘90s: first use of NOR flash for updatable firmware
- 1997/98: first use of NAND in MMC flash memory cards
- 2001: first internal NAND: Nokia 9100 smartphone
- 2007: iPhone introduction
- Today: cell phones use nearly 30% of NAND flash production
Portable Data Storage: Cards + Sticks

- **1991**: PCMCIA flash cards
- **microSD card**
 - **2004** (128MB)
 - **2014** (128GB)
 - 1000x increase in 10 years
 - **2015** (200GB)
 - 16 stacked flash chips
 - TLC (3 bits/cell)
Apple iPod: From HDD to Flash

- 2000: Steve Jobs met with Eli Harari
 - Wanted SSD at Toshiba HDD price
- Oct. **2001**: iPod introduced
 - 5GB Toshiba 1.8” HDD
 - 4GB/6GB 1” Microdrive from Hitachi and Seagate (used CompactFlash i/f)
- Sept. **2005**: iPod Nano
 - 4GB flash
- Current models: 16GB flash
Four NAND Flash Manufacturers

NAND Flash Products

<table>
<thead>
<tr>
<th>Makers</th>
<th>20 nm Class (2D)</th>
<th>10 nm Class (2D)</th>
<th>3D NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung</td>
<td>27nm</td>
<td>21nm</td>
<td>V-NAND (24 L → 32L)</td>
</tr>
<tr>
<td>Toshiba</td>
<td>24nm</td>
<td>19nm</td>
<td>15nm</td>
</tr>
<tr>
<td>SanDisk</td>
<td></td>
<td></td>
<td>A-19nm</td>
</tr>
<tr>
<td>Micron</td>
<td>25nm</td>
<td>20nm</td>
<td>16nm</td>
</tr>
<tr>
<td>SK Hynix</td>
<td>26nm</td>
<td></td>
<td>16nm</td>
</tr>
</tbody>
</table>
Samsung’s 3rd Generation 3D NAND

Samsung 3D V-NAND

1st Generation (V1, 2012 ~ 2013): 24 Layers/128Gb

Announced at FMS2015 (Aug. 11th)
Samsung’s 2nd Gen. 3D NAND

Samsung 3D V2-NAND

V2-NAND 32 Layers (X-section)
Samsung PM1633a (3D V3-NAND)

PM1633a (15.36 TB) to ship early 2016

PM1725, a one million IOPS 6.4TB NVMe PCIe SSD