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1. Introduction

Near-field diffractive optical imagers, such as arrays of
angle-sensitive pixels (ASPs) that exploit the Talbot ef-
fect using integrated CMOS amplitude diffraction gratings
[1, 2], show great promise in enabling the construction of
unprecedentedly-small optical sensors. However, technical
and fundamental obstacles limit the high-resolution perfor-
mance of standard ASP arrays. [3, 4] Three fundamental ob-
stacles to ASPs’ application in high-resolution optical sensing
under standard illumination are their sensitivity to manufac-
turing errors, their transfer function phase-reversals caused by
changes in wavelength, and their decreasing area efficiency at
higher resolutions.

Here, I present an analysis of the near-field diffraction
caused by odd-symmetry gratings, a class of diffractive op-
tical element fundamental to the operation of a new class
of ultra-miniature imager. [5] Odd-symmetry gratings, unlike
ASPs, exhibit wavelength- and depth-robust, compact, angle-
dependent null planes under lines of odd symmetry, defined
as follows.

Definition 1. A null under a line of odd symmetry is “robust”
if, for normally-incident light of any wavelength λ , the light
intensity on planes beneath the odd-symmetry line is 0.

Nulls produced by ASPs are not robust due to their acute
sensitivity to wavelength and manufacturing depth.

Like the null at the center of an optical vortex [6,7], robust
nulls created by odd-symmetry phase gratings are sensitive
neither to the depth below the phase element nor to the wave-
length of light. Unlike optical vortices which produce line-
shaped nulls, odd-symmetry phase gratings produce plane-
shaped nulls.

2. Geometry and scalar diffraction

The electric field amplitude at a specific point (0,y0,z > 0)
below the phase grating (see Fig. 1) can be found by inte-
grating the contributions to that point caused by light passing
through all locations of the phase grating above. I will use
y0 to denote the y coordinate of the point where the electric
field amplitude is observed, reserving y for positions at the
phase grating in the same coordinate system. Let the time-
varying optical electric field induced by light of polarization
ψ and wavelength (in the medium) λ at a point (0,y0,z) be
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Fig. 1. An odd-symmetry, binary phase grating shown in
cross-section. A phase grating at the intersection of two opti-
cal media introduces a phase delay of a half wavelength be-
tween light passing through a thick versus a thin portion of the
grating. One robust null is shown as a dashed vertical line; if
the grating were to repeat then both the left and right borders
would also exhibit robust nulls. The optical media have re-
fractive indices and dispersions such that the phase delay is
roughly constant across λ s of interest. The grating in this ex-
ample has only two depths (making it easy to manufacture),
whereas in general the phase delay at any point need not be-
long to a discrete set.
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, where c is the speed of light and

n is the refraction index of the medium. The light intensity
at (0,y0,z) is proportional to |E(λ ,y0,z,ψ)|2. The expres-
sion for the complex electric field amplitude E(λ ,y0,z,ψ) for
normally-incident light is given by scalar diffraction:

Eλ ,y0,z,ψ =
∫∫
P

C(x,y− y0,z)e2πi r
λ eiφ(x,y,ψ,λ )dydx. (1)

P is the plane of the grating, r =
√

x2 +(y− y0)2 + z2, and
C(x,y− y0,z) represents the magnitude of the Green’s func-
tion governing the coupling between the surface of the grat-
ing at (x,y,0) and the point (0,y0,z). C is strictly positive
on r < ∞ and C(x,y− y0,z) = C(−x,y− y0,z). The real part
of φ(x,y,ψ,λ ) is the phase delay (in radians) introduced by
the grating at position (x,y,0) for light of polarization ψ and
wavelength λ , while the imaginary part of φ represents at-
tenuation, which we assume to be finite or 0. Exploiting the
reflection symmetry of most terms in Eq. 1 about x = 0, it
is possible to write an expression for E integrating over the

1



half-plane H where x > 0:

Eλ ,y0,z,ψ =
∫∫
H

C(x,y− y0,z)e2πi r
λ

(
eiφ(x)+ eiφ(−x)

)
︸ ︷︷ ︸

Grating effects

dydx

(2)
where φ ’s dependence on (y,ψ,λ ) has been omitted for com-
pactness and the terms showing the effects of the gratings
have been explicitly marked. Let us define odd-symmetry
phase gratings as follows.

Definition 2. A phase grating has odd symmetry along the
y-axis if Eq. 3 holds:

φ(x,y,λ ,ψ)=φ(−x,y,λ ,ψ)+π +2πm, m ∈ Z (3)

where Z denotes the set of integers.

Phase profiles similar to these have been explored in
Dammann gratings [8], however to my knowledge this is their
first use in near-field diffraction elements. Figure 1 illustrates
a phase grating with only two heights (i.e. a binary grating),
while gratings can take multiple, or even piecewise continu-
ous, heights and still conform to Eq. 3.

There are three free parameters in the binary grating of
Fig. 1: the lengths w0, w1 and w2. In general, one can con-
struct a binary odd-symmetry grating with any number of
such lengths, so long as thick and thin grating segments alter-
nate as shown in Fig. 1. Repeating binary odd-symmetry grat-
ings (such as the design shown in Fig. 1) with n+ 1 free pa-
rameters create repeated odd-symmetry planes spaced apart

by a distance w0 +
j=n
∑
j=1

2w j.

Ignoring dispersion, phase delays will be proportional to
the reciprocal of the wavelength. However, by pairing a
high-dispersion, low-n optical plastic above a low-dispersion,
high-n optical glass, the phase delay introduced by the grating
can be made to be approximately wavelength-independent, as
seen in Fig. 2.
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Fig. 2. Phase delay (solid red) induced by a 0.9-micron-tall
phase grating made from a high-dispersion, low-n optical
plastic above a low-dispersion, high-n optical glass. Phase de-
lays are roughly equal to π (dashed line) for all visible light.

3. Proof that odd symmetry is sufficient to produce ro-
bust nulls

At all points on the half-plane (0,y0,z), z > 0, Eq. 3 guaran-
tees that a for every contribution to E from the left (x < 0),

there is a contribution from the right (x > 0) of equal magni-
tude but opposite phase. As each pair of contributions cancel,
they sum to 0. To aid our proofs of the equivalence of odd
symmetry and robust nulls, I will introduce two functions q
and p that loosely describe the in- and out-of-phase contribu-
tions from pairs of points reflected about x = 0.

Theorem 1. If a phase grating satisfies Eq. 3, it has a robust
null at x = 0.

Proof. To see why odd symmetry produces robust nulls, in-
troduce the following functions:

p(x)≡ φ(x)+φ(−x)+π

2
(4)

q(x)≡ φ(x)−φ(−x)−π

2
, (5)

where dependence on (y,ψ,λ ) has been omitted for succinct-
ness. The following identities obtain:

φ(x)= p(x)+q(x) (6)

p(−x)= p(x) (7)

q(−x)=−q(x)−π (8)(
eiφ(x)+ eiφ(−x)

)
=2ieip(x) sin(q(x)). (9)

If and only if Eq. 3 is satisfied, q(x) evaluates to mπ, m ∈ Z
and sin(q(x)) = 0, so by Eq. 9,

(
eiφ(x)+ eiφ(−x)

)
= 0. Substi-

tuting into Eq. 2, we see that if Eq. 3 is satisfied, Eλ ,y0,z,ψ = 0
regardless of z, y0, λ or ψ , and the null is robust.

Therefore, adherence to Eq. 3 is sufficient to create robust
nulls in the near-field diffraction patterns produced by phase
gratings. Diffraction-based optical elements made with odd-
symmetry gratings therefore do not exhibit phase-reversing
near-field nulls with changing wavelength or depth.

If the phase grating has multiple nulls, the spacing between
any adjacent pair being at least several microns, then it is
straightforward to construct multiple photodiodes per period
of the overlying phase grating. I discuss elsewhere [5] how
this arrangement can lead to an angle-sensitive photosensor
with much better information density than ASP-based optical
sensors.

4. Proof that odd symmetry is necessary to produce ro-
bust nulls

In Sect. 3, we saw that odd symmetry is sufficient to induce
robust nulls. Here, I prove that it is also necessary, a useful
result in that it can dramatically limit the design space needed
to be considered for designing wavelength- and depth-robust
phase gratings.

Theorem 2. If a phase grating has a robust null at x = 0
extending for an open set of y0 and its attenuation is less than
infinite everywhere, its phase retardation and attenuation φ

satisfies Eq. 3 on every open set of grating locations.
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The constraint that the grating’s attenuation is never infinite
is a consequence of the fact that the phase of a contribution of
0 magnitude is not relevant to the observed electric field mag-
nitude. A straightforward extension of the proof below covers
the limit where certain regions of the grating (also symmetric
about x = 0) completely block light. The “open set” restric-
tion is also useful to exclude sets of measure 0 and points
infinitely far from (0,y0,z).

Proof. I will construct a proof by contradiction. Assume the
grating has a robust null, yet violates Eq. 3 on some open
set of grating locations. I will factor the terms in the inte-
grand of Eq. 2 into one portion F that is 0 only if Eq. 3 is
satisfied, and a second portion G which is always nonzero in
magnitude. I will then use Parseval’s theorem to show that
assuming a null is robust actually implies F must be 0 ex-
cept on sets of measure 0, violating the assumption that Eq. 3
is not satisfied on some open set. Define F and G as follows:
F ≡ sin(q(x,y,λ ,ψ)) and G≡ 2iC(x,y−y0,z)eip(x,y,λ ,ψ). The
Green’s function C(x,y− y0,z) has a finite magnitude except
at ∞, and by assumption that the grating’s attenuation is less
than infinite, ℑ(p(x,y,λ ,ψ)) < ∞, making the magnitude of
eip(x,y,λ ,ψ) also finite. Therefore, |G| is nonzero except at ∞.
By Eqs. 2 and 9,

Eλ ,y0,z,ψ =
∫∫
H

F(x,y)e2πi r
λ G(x,y)dydx (10)

Introduce the change of variables ν ≡ r̂ c
λ

where r̂ is the unit
vector in the direction of (x,y) and |ν | is the frequency of the
light of wavelength λ . Also introduce a change of variables

r′ ≡ r̂
(√

x2+(y−y0)2+z2

c − z
c

)
, making new functions F ′ and

G′, which are functions of r′ and ν . Note that r′ and ν are
vector quantities, shown in boldface. Let F ′(r′) take the exact
value of F(x,y) at the r′ corresponding to (x,y), but scale G′

such that G′(r′)dr′ = 2π G(x,y)dxdy. Other than at r′ = 0 (a
set of measure 0), F ′ and G′ are finite precisely where F and
G are, open sets on the x-y plane are mapped to open sets on
r′, and |G′| is finite except at ∞. Equation 10 becomes:

Eν ,y0,z,ψ =
1

2π

∫∫
H

F ′(r′)e2πiν ·r′G′(r′)dr′. (11)

Extending F ′ and G′ out of the half-plane H as follows:

F ′′(r′) ≡
{

F ′(r′) if x > 0
0 if x≤ 0

G′′(r′) ≡
{

G′(r′) if x > 0
1 if x≤ 0

permits Eq. 11 to be extended over the full plane P, leading
to a Fourier transform in ν :

Eν ,y0,z,ψ =
1

2π

∫∫
P

F ′′(r′)e2πiν ·r′G′′(r′)dr′. (12)

Note that |G′′| is finite except at ∞ and 0. By Parseval’s theo-
rem, Eq. 12 implies that∫∫

P

∣∣Eν ,y0,z,ψ
∣∣2 dν =

∫∫
P

∣∣F ′′(r′)G′′(r′)∣∣2 dr′. (13)

The integral of Eν ,y0,z,ψ on the circle |ν |= c
λ

gives the ampli-
tude of the electric field due to light at wavelength λ observed
at (0,y0,z), which is 0 by assumption. Since G′′ is finite on
all open sets of P except at the origin, either F ′′ must be 0
on all open sets (and the grating has odd symmetry) or F ′′ is
nonzero and Eν ,y0,z,ψ is nonzero but its integral over all cir-
cles |ν |= c

λ
is zero (implying rotational symmetry in φ about

(x,y0)). This second possibility cannot be true by assumption
that the null persists over an open set of y0, and contiguous
points cannot all have nontrivial rotational symmetry. There-
fore F ′′ is 0 on all open sets and the grating must satisfy Eq.
3 on all open sets, violating the assumptions and achieving
proof by contradiction.

Therefore, the only way to achieve robust null halfplanes in
a near-field diffraction pattern with a phase grating is if that
phase grating has one or more odd-symmetry lines.

5. Applications and conclusions

This paper has shown that odd-symmetry phase gratings
produce wavelength- and depth-robust null halfplanes under
normally-incident light, and conversely that the only way of
manufacturing wavelength-robust null halfplanes is to con-
struct an odd-symmetry grating.

Odd-symmetry gratings promise many new applications.
They are as small as other diffraction-scale elements such
as ASPs, yet they overcome many of the latter’s limitations.
Thus, we expect odd-symmetry gratings might enable new
classes of optical sensors and light sources, and we are ac-
tively investigating optical sensing, illumination and imaging
applications using these gratings both alone and in combina-
tion with other optical elements.
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