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1. Introduction and background

The problems of automatic digital refocussing and of extending depth of Àeld have received a great deal of study. [1]
Extending the depth of Àeld in an imaging system with a Àxed f/number beyond the classical geometric limit has
been approached through a number of methods in computational imaging. The general approach in point-spread-
function engineering is to optically transform or code the sensed optical signal and then digitally process the sensed
image. Dowski and Cathy introduced cubic-phase plates, which blurred the image signiÀcantly nearly independent
of object distance; the sensed image is then digitally sharpened in a space-invariant way, yielding extended depth of

adeñatsaC-adejO]2[.noitamrofnihtpedgnisolelihwdleÀ and his colleagues explored different types of lenses and
groups of lenses with matched digital processing. [3, 4] Cossairt and colleagues introduced special diffusion plates,
which blurred the image in an invertible way. [5] Digital refocusing is direct in plenoptic cameras, which capture the
four-dimensional light Àeld. [6, 7]
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Fig. 1. Left: A ray tracing diagram of a cylinder of rays from a distant point source passing through
the primary lens and odd-symmetry spiral gratings onto a photodiode array. (The distance between
the gratings and photodiode array is increased just for illustration purposes.) Right: If the grating is
not present, the point spread function is small at the conjugate focus (In focus). When the grating is
in place a spiral point-spread function results, one covering the spatial-frequency domain (up to the
Nyquist limit, and devoid of zeros).

Gill and his colleagues introduced lensless integrated imagers in which wires in traditional CMOS acted as ampli-
tude diffraction gratings. [8–11] Recently, new classes of odd symmetry spiral phase gratings overcame the limitations
of those gratings, such as poor low-light sensitivity. [12–14] Here we demonstrate that these novel gratings support
computational refocussing and Bayesian depth estimation in a lensed imager.



2. Odd symmetry phase gratings

Figure 2 shows the simulated PSF from a point source of various distances from the primary lens, both with and
without the spiral grating. When the point source is at the conjugate focus of the photosensor array (middle figures),
the PSFs are small and similar to a standard PSF. However, for point sources at other ranges, the grating induces
PSF substructure with high spatial frequency content. This high-frequency content prevents the PSF from being an
information-destroying low-pass filter. Note that due to the wavelength- and depth-invariance of odd-symmetry grat-
ings, these patterns are largely wavelength-independent and robust against limited manufacturing precision. [13, 14]

100μm

Close point source Distant point source

10μm

Fig. 2. Effect of phase gratings at different focal depths. Left: Light from a single point source strikes
a disk (shown in stark black and white) on an array of spiral odd-symmetry phase gratings. Right,
top row: the PSF observable at the sensor array contains computationally-invertible substructure
that changes as the point source moves through the conjugate focus of the imager array. Due to the
properties of the odd-symmetry grating, these PSFs are wavelength-insensitive. Bottom row: the PSF
that would be observed without the phase grating. All simulations assume primary lens aberrations
and white light with wavelengths of 400-600 nm.

3. Digital refocusing and depth estimation

The most probable object depth d̂ at a point in the field of view given sensor data y can be estimated through Bayesian
methods. [15] At each point in the field of view and candidate depth d, one can calculate a candidate image x =
F−1

(

F (y)
F (kd)

)

, where kd is the depth-dependent PSF, and F (·) and F−1(·) denote the Fourier transform and its
inverse. However, many of these x(d,y) will be improbable given natural scene statistics, and some ds would even
imply negative light intensities in x. By selecting the d that maximizes the product of p(d) and p(x(d,y)), we can find
the most likely depth d̂. More formally, letF (y) = F (x)F (kd)+n where n is sensor or other noise. The likelihood
p(y|d) equals the probability of the Fourier transform of a scene given y, n and d: p(F (x(d,y))+ n

F (kd)
). From this

probability we can compute a most-likely depth d̂ using Bayes’ rule as follows:

d̂ = argmax
d

[

p(d)p
(

F (x(d,y))+ n
F (kd)

)]

, (1)

where the second term incorporates knowledge of the probability distribution of photographed scenes and the noise of
the system, all scaled by the (non-zero) Fourier power of the kernel. The high computational complexity of this search
over d at each point can be reduced using priors over depth distribution and algorithmic heuristics. With d known,
deconvolution with kd recovers the in-focus image as well (Fig. 3).

4. Conclusion

We have demonstrated in full, end-to-end simulation that computational imaging systems incorporating odd-symmetry
phase gratings can be digitally refocused in a spatially varying manner, thereby extending the depth of field. These
methods also yield an estimate of the target depth at each point in the field of view.
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Fig. 3. An end-to-end simulation of the imaging by a lens with our spiral phase grating. At the left
is a synthetic image of a close ice cream cone and a distant tower. The corresponding “near” and
“far” effective PSFs of each is shown; these produce the final image on the image plane shown at
the middle. At the top is a digitally refocussed image and at the bottom the inferred depth map, both
computed using the appropriate or “matched” PSF, which would be found using Bayesian methods.
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