
Real-Time Operating Systems
for Systems on a Chip

About Bob Zeidman

Founder of Zeidman Technologies,
Zeidman Consulting

Engineering consultant since 1987

Clients include Apple Computer,
Cisco Systems, Mentor Graphics,
and Texas Instruments

Author of Verilog Designer’s
Library, Introduction to Verilog,
Designing with FPGAs and CPLDs,
and articles on engineering and
consulting

Patents on software synthesis,
hardware synthesis, emulation

Degrees from Cornell and Stanford

Introduction

This seminar examines different options
for putting a real-time operating system
(RTOS) on a system on a chip (SOC)

 Purchase an off-the-shelf RTOS

 Write your own RTOS

 Synthesize an RTOS

Introduction

Intended Audience
 Software engineers who need to design a multitasking embedded

system for an SOC and who are concerned about cost,
development time, efficiency, and reliability

Results
 You will understand the requirements, limitations, tradeoffs, and

tools available for implementing an RTOS for an SOC

Prerequisites
 Basic understanding of FPGA design or ASIC design

 Understanding of systems on a chip (SOCs)

 Knowledge of programming

 Knowledge of real-time operating systems (RTOSes) is helpful but
not required

What is a System on a Chip?

For our purposes, a SOC is one that
includes a microprocessor.

What is an RTOS?

“A program that schedules execution

within specified time constraints,
manages system resources, and
provides a consistent foundation for
developing application code.”

Real-Time Concepts for Embedded Systems

What is a “Hard RTOS?”

Has time constraints that must be met
under any and all conditions for certain
tasks.

What is an OS?

Only kernel – the core supervisory software
that provides minimal logic, scheduling, and
resource management algorithms?

A combination of various modules, including
the kernel, a file system, networking protocol
stacks, and other components required for a
particular application?

For our purposes, it is the kernel (task
manager). The drivers and applications will
be considered separately.

Do You Need An RTOS?

If your SOC will execute more than one
task

Communication with other processors is
a task

Purchasing an RTOS

“Off-The-Shelf”

Object Code vs. Source Code

Royalties vs. Royalty Free

Purchasing an RTOS

Debugged and tested

Integrated with existing tools

Comes with support

Requires little in-house specialized
knowledge

Writing Your Own RTOS

About half of all embedded systems
projects still use a proprietary, “home-
grown” RTOS (finally changing)

Protects intellectual property

Maintains control over code

Reduces complexity and size

Requires significant in-house expertise

Synthesizing an RTOS

New technology

Source code in, source code out

Integrated with existing tools

Requires no in-house specialized knowledge

Protects intellectual property

Maintains control over code

Reduces complexity and size

RTOS Considerations

Run Time Issues

Development Time Issues

SOC Issues

Run Time Issues

Maintainability

Performance

Predictability

Reliability

Scalability

Size

Maintainability

Who fixes bugs in the field?

 Purchased RTOS: Shared between you and
vendor

 In-house RTOS: You

 Synthesized RTOS: You

Performance

Task latency times

Interrupt latency times

Data throughput

Task execution times

Other

Predictability

Purchased RTOS

 Characterized by vendor

In-house RTOS

 You must perform exhaustive testing

Synthesized RTOS

 Static timing analysis

Reliability

Deadlock. A situation where a task is blocked from executing
because it is waiting for a resource to become available while
that resource is directly or indirectly waiting for the task to
continue.
Priority inversion. A situation where a high priority task is
delayed while waiting to access a shared resource even though
the resource is free to be used. In effect, the high priority task
has been given a very low priority.
Race conditions. This occurs when the outcome of an
embedded system depends on the specific order in which tasks
are executed.
Starvation. A task cannot continue because it is waiting for a
resource, but the operating system, usually due to a bug, will
not give the task access even though the resource is available.

Scalability

Purchased RTOS

 Much functional scalability

In-house RTOS

 Difficult to design in scalability

Synthesized RTOS

 Need to re-synthesize entire system

Size

Purchased RTOS
 Modules removed to decrease size

 Compression

In-house RTOS
 Can be designed to be fairly small

Synthesized RTOS
 Extremely small – automatically minimized

according to application requirements

Development Time Issues

Configurability

Cost

Driver and application libraries

Maintainability

Portability

Scalability

Standard interfaces

Tool chain support

Configurability

Purchased RTOS with source code
 Doable but difficult

Purchased RTOS without source code
 Not possible

In-house RTOS
 Very configurable

Synthesized RTOS
 Automatically configurable

Cost

Linux

 There’s no such thing as a free lunch

 Development time

 How does Monta Vista make money?

Driver and Application Libraries

Purchased RTOS with source code

 Extensive, supplied by open source community

Purchased RTOS without source code

 Large, supplied by vendor

In-house RTOS

 Small

Synthesized RTOS

 Small now, but just wait

Maintainability

Who improves RTOS?

 Purchased RTOS: Vendor

 In-house RTOS: You

 Synthesized RTOS: Tool vendor

Portability

Who ports to new processors?

 Purchased RTOS: Vendor

 In-house RTOS: You

 Synthesized RTOS: Automatic

Scalability

Ability to add new functionality

 Purchased RTOS: Scalability built in

 In-house RTOS: If you build it in

 Synthesized RTOS: Automatic

Standard Interfaces

Purchased RTOS

 Many standard interfaces built in

In-house RTOS

 Whatever you build in

Synthesized RTOS

 Uses currently non-standard interfaces

Tool Chain Support

Purchased RTOS
 Typically very good support

In-house RTOS
 Typically not very good support

Synthesized RTOS
 Very good support for basic tools

 Ability to easily add support for advanced
tools

SOC Issues

Configurability

Portability

Scalability

Size

Tool chain support

Conclusions

Many choices for an RTOS

Purchasing RTOS
 Object code

 Source code

Writing RTOS

Synthesizing RTOS

Issues regarding the RTOS
 Run time

 Development time

 SOC issues

15565 Swiss Creek Lane
Cupertino, CA 95014
Tel (408) 741-5809
Fax (408) 741-5231
www.zeidman.biz

Bob Zeidman
President

bob@zeidman.biz

