Medical Device Development and Entrepreneurship

Presented by:

T. Kim Parnell, Ph.D., P.E.
The PEC Group
www.parnell-eng.com
Introduction

• Overview
• Medical Device Development
• Device Startups
• Consulting
Some Device Fields...

- Cardiovascular
- Orthopaedic
- Sleep disturbances
- Vascular closure
- Cosmetic
- Etc.
AAA Devices
Abdominal Aortic Aneurysm
AAA Device
Coronary Artery Disease

- Stents are used as scaffolds to hold open the artery
Finite Element Analysis (FEA)

- Design
- Life prediction
- FDA requirements
- Can shorten the design cycle
FEA & Testing

• Finite element analysis (FEA) and physical testing are complementary
• A comprehensive program needs to include both components
• With judicious experimental validation, FEA can be used to reduce the amount of physical testing that is needed and shorten the design cycle
The Challenge for Medical Device Development

• Reduce development time
• Increase confidence of success
• Avoid surprises and delays
Prototype Development

• Physical prototype
 • Cost and lead time is often a limitation
 • Essential for animal testing and determining needed characteristics
 • Want to reduce the number of design iterations that are prototyped

• Virtual prototype
 • Assess more design options
 • Compare alternatives
Testing Is Essential for:

- Detailed characterization of the material; Getting data needed for the analysis
- Fatigue testing taking into account surface finish, processing steps
- Validation
Nitinol Stent FEA
Stent FEA
Stent FEA

• Rolldown

Expansion
Stent FEA

- Rolldown
 - time = 4.1000E+00
 - fringes of eff. stress (v-m)
 - min=4.667E+02 in element 3802
 - max=5.873E+04 in element 6747
 - ref. surface values for shells

- Expansion
 - time = 6.0500E+00
 - fringes of eff. stress (v-m)
 - min=1.205E+03 in element 13087
 - max=1.059E+05 in element 14091
 - ref. surface values for shells
Creative Strategies in Medical Devices
510(K) vs PMA?

• 510(K)
 ▪ Concept of equivalence
 ▪ May 28, 1976 Medical Devices Amendments to the FDA
 ▪ Pro’s
 • Speed
 • Lower risk
 ▪ Con’s
 • Low barriers to entry
 • 510(K) with clinical trials

• PMA – Pre Market Approval
 ▪ Clinical trials for safety and efficacy of device
 ▪ Pro’s – barriers to entry
 ▪ Con’s – time, expense and risk
Medical Device Development

- Needs Assessment
- Research
- Intellectual property
- Biomedical ethics
- Brainstorming
- Assessing Clinical and Market Potential
- Developing patent strategies
- Prototyping
Value of Execution

- Ref: Rich Ferrari
Consulting Implications

• Reduced fees for equity?
 ▪ Incentive
 ▪ Upside potential

• Need some assessment of the company
 ▪ Capitalization
 ▪ Burn rate
Resources

Startups & Business

• SVEBP www.siliconvalleypace.com
• Stanford BUS16 continuingstudies.stanford.edu
• TVC www.techventures.org
• TEN www.tensv.org
• Girvan Institute www.girvan.org
Medical Device

- Stanford Biodesign innovation.stanford.edu
- BioDesign Network mdn.stanford.edu
- NanoBioConvergence www.nanobioconvergence.org
- DeviceLink www.devicelink.com/mddi
- TCT www.tctmd.com
- Vulnerable Plaque www.vp.org
- Vascular News www.CXvascular.com
Summary

• Many opportunities in medical devices
 ▪ Entrepreneurs
 ▪ Consultants
• Increasingly multi-disciplinary
• Technology can be applied to advantage