HOW LEDS ARE CHANGING THE WORLD

Mike Krames, PhD

IEEE CNSV Meeting - 7 Oct 2015 - Palo Alto

Semiconductors: Transistors to Light

Bardeen, Shockley, Brattain AT&T Bell Labs, 1948

Holonyak & Bardneen University of Illinois, early 1970s

Krames, Holonyak & Nakamura University of Illinois, 2012

- [Bardeen '48] Invention of transistor ignited semiconductor materials R&D
- [Holonyak '62] III-V alloy engineering and the first practical visible-spectrum (red) LED
- [Nakamura '91, with Akasaki & Amano] First III-nitride (GaN-based) blue-emitting LED

LED Evolution of Performance

Exceeds all conventional technologies...

Energy Savings Using LEDs

Total U.S. Lighting Energy Consumption Forecast 2013 to 2030

Solid State Lighting R&D Plan U.S. Department of Energy May 2015

111

- Target savings of 395,000 gigaWatt-hours per year by 2030
- ~ 50 large coal-fired power stations
- ~ 300 million tons of reduced CO₂ emissions (or 57 M automobiles)

- One Watt of optical power at 555 nm = 683 lumens
- Typical "white" spectra are 250-350 lumens per Watt (lm/W)

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

- One Watt of optical power at 555 nm = 683 lumens
- Typical "white" spectra are 250-350 lumens per Watt (lm/W)

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

- One Watt of optical power at 555 nm = 683 lumens
- Typical "white" spectra are 250-350 lumens per Watt (lm/W)

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

- One Watt of optical power at 555 nm = 683 lumens
- Typical "white" spectra are 250-350 lumens per Watt (lm/W)

LED Fundamentals

- External Quantum Efficiency (EQE): % injected electrons generating photons emitting outside LED chip
 - EQE is a product of:
 - (1) Internal Quantum Efficiency: % injected electrons generating photons inside LED chip
 - (2) Chip light extraction efficiency: fraction of photons that escape LED chip

LED Material Systems

• (AI,Ga)InP: red to amber

Krames, Handbook of Visual Display Technology © Springer-Verlag Berlin Heidelberg 2012

• (In,Ga)N: green to blue to UV-A

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

Manufacturing: Epitaxy

- Device layers deposited via Metal Organic Chemical Vapor Deposition (MOCVD)
- Layer control to the nanometer level (e.g., quantum wells)
- Control over temperature to less than 1°C at 800°C (InGaN)

Substrate choice	(Al,Ga)InP	(In,Ga)N
	GaAs, Ge	Al ₂ O ₃ , SiC, Si, GaN

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

Manufacturing: Chip Fabrication

- Mg "activation"
- Semi-transparent p Ohmic contact
- p electrode
- Mesa etch
- n Ohmic contact
- Singulation

Light Extraction Efficiency

- Dense materials with refractive index, n ~ 2.4 (GaN) to 3.3 (GaP)
- Probability to escape surface ~ $1/n^2 \rightarrow$ only 5-10% per pass

Krames, *Handbook of Visual Display Technology* © Springer-Verlag Berlin Heidelberg 2012 Hurni *et al.*, Applied Physics Letters 106, 031101 (2015)

Light Extraction Efficiency

AS	absorbing substrate
TS	transparent substrate
NiAu	nickel-gold
AI	aluminum
Ag	silver
FC	flip-chip
TF	thin-film
ITO	indium-tin-oxide
PSS	patterned sapphire substrate

- For GaN, nearing theoretical limits (90%)
- For (AI,Ga)InP, high refractive index and internal losses remain a challenge

Manufacturing: Packaging I

- Low Power
 - 5 to 50 mA
 - "T1 ³/₄" circa 1970s+
- Mid Power
 - 50 to 150 mA
 - "SnapLED" circa 1990+
- High Power
 - 150 mA to 3 A
 - Luxeon[™] circa 2000+

Application: Signaling & Signage

White Emitting LEDs

Krames, Handbook of Visual Display Technology © Springer-Verlag Berlin Heidelberg 2012

- Blue- (or violet-) emitting LED excites phosphor(s)
- Almost any color realizable
- "Whites ranging" from low color temperature (~1800K) to high (~5000K)

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

Metal contact

LED Down-Conversion Materials

Phosphors

- (Y,AI)O:Ce yellow; from scintillators
- (Lu,Al)O:Ce green; another "garnet"
- 2-5-8 Nitrides red, amber; "new" last decade
- GE's "PFS" line-emitter for LEDs

Quantum Dots

- Semiconductor nanoparticles, aka "quantum dots"
- Cd(S,Se)
- (In,Ga)P
- Now deployed in flat-panel displays

Manufacturing: Packaging II

- Low Power
 - 5 to 50 mA
 - "T1 ³/₄" circa 1970s+
- Mid Power
 - 50 to 150 mA
 - "SnapLED" circa 1990+

- AND

4 mm x 1 mm

3 mm x 3 mm

- High Power
 - 150 mA to 3 A
 - Luxeon[™] circa 2000+

3 mm x 5 mm

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

Manufacturing: Packaging II

- Phosphor incorporation a major driver for package design and manufacturing processes
 - e.g., "Chip-On-Board" LEDs for high-output directional lighting
- Packaging sophistication as efficiency has improved (less heat generation)
 - e.g., LED "chip-scale package" (CSP) to reduce and eliminate package elements

Application: Displays & Imaging

Introducing lac with Retina display

Watch the video

IEEE CNSV Meeting - 7 Oct 2015 - Palo Alto

Application: Retrofit Lamps

Image Sources: a) Lamp: <u>http://electronics.stackexchange.com/questions/76883/how-do-led-light-bulbs-</u> work, b) Package: Tuttle & McClear, LED Magazine Feb. 2014.

www.soraa.com

- "60-Watt equivalent" for less than 10 W
- Surpassing halogen directional performance (Soraa, 2012): 50 → 7 Watts
- A platform for energy saving controls, and big data

Application: Luminaires

<u>Outdoor</u>

- Much better light utilization & dramatic energy savings
- New design capability
- Further improvements utilizing controls (e.g., proximity sensors, etc.)

Light Quality: Color

Eight "pastel" Munsell samples used for CRI

www.soraa.com

- Color Rendering Index (CRI, or R_a) limited
- CRI 80 is minimum for ENERGY STAR

- IES TM-30 color fidelity metric (R_f) 99 colors
- Optical brightening agent "whiteness rendering" -?

Light Quality: Health

- Human circadian clock regulated by blue light (non-visual photo-receptor) Brainard et al.
- Most LEDs are based on blue primary emitters
- Attention should be placed on time / location of light sources and/or their emission spectrum

Application: Automotive

Audi R8

Krames et al., IEEE J Disp Technol 3, 160, 2007

- Brightness exceeding halogen filament, 2007
- First LED headlights, circa 2008
- Moving towards mass adoption

Application: Internet of Things

The Future: Illumination

CoeLux S.r.l. in Italy capture both sun and sky in an LED luminaire.

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

The Future: Illumination

CoeLux S.r.l. in Italy capture both sun and sky in an LED luminaire.

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

Future: Health & Productivity

"Human Centric Lighting" will drive value creation

Lighting designs must be "healthy"

IEEE CNSV Meeting — 7 Oct 2015 — Palo Alto

Future: Displays

Non-Native "Target" Substrate

1.4" passive matrix display 3 um x 10 um LEDs

Images courtesy of X-Celeprint, Ltd.

- LCD panel transmissivity typically less than 5%
- Opportunity for direct-emitting *inorganic* LED displays
 - > 10x power reduction
 - Higher color gamut
 - Daylight viewability (!)

Future: Internet of Light

Indoor Location-Based Services Using LED Lighting

- LED light modulation "LiFi" communication with personal device
- Commissioned LED lights → "indoor GPS" with sub-meter location accuracy

Status LED Performance

- (Al,Ga)InP: bandstructure limitations, esp. at higher temperatures
- (In,Ga)N: strain and miscibility issues with increasing [InN] fraction

LED Reliability

LM-80 Testing

Courtesy D. Hamilton, Hubbell Lighting

USEFUL Information

TM-21 PROJECTION FROM THE LM-80 RESULTS

NOMENCLATURE: Lp (DK):

p = The percentage of initial lumen
output that is maintained
D = The total duration of the test in
hours divided by 1000 and rounded

EXAMPLE: L70 (10K)-Where

L₇₀ – 70% of initial lumen output 10K - Total duration of test 10,000 hrs

- Illuminating Engineering Society (IES) guides standards (e.g., ENERGY STAR)
- What is missing: Something similar for electronic drivers...!

The Future: LED Performance

Blue & Violet exhibit classic "s-curve" behavior → nearing theoretical limits

Green, Amber, & Red emitters do not → efficiencies have stalled

Opportunities for new research & development

IEEE CNSV Meeting - 7 Oct 2015 - Palo Alto

THANK YOU

IEEE CNSV Meeting - 7 Oct 2015 - Palo Alto